Cooper Sophie, Kaltsoyannis Nikolas
Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Dalton Trans. 2022 Apr 12;51(15):5929-5937. doi: 10.1039/d2dt00315e.
A potential connection has previously been proposed between the emergence of unexpected covalent behaviour in various transcurium complexes and the increasing stability of the +2 oxidation state in the later members of the actinide series. We recently used computational methods to study AnCl, finding evidence for energy degeneracy driven covalency in the later actinides, and here present a comparative study of AnCl. The An-Cl bond lengths of the latter divide into two data sets; Th-Np, Cm, Bk and Pu, Am, Cf-No. On average the An-Cl bond length decreases for both sets but, with significant increases between Np and Pu, and between Bk and Cf, unlike the former group (Pu, Am, Cf-No)Cl have significantly larger lengths than the corresponding trichlorides. Using a range of Natural Bond Orbital (NBO), Natural Resonance Theory (NRT) and Quantum Theory of Atoms In Molecules (QTAIM) metrics, the covalency of the dichloride bonds is analysed. We find that the first group of dichlorides are similar to their trichloride counterparts and possess significantly more covalent bonds than (Pu, Am, Cf-No)Cl. We believe this change in covalent behaviour across the series for the dichlorides is due to a decreased involvement of the 6d orbital in the later elements (as a result of the f-d excitation energy exceeding the d-stabilisation energy of the actinide ions in question). Moreover, we find that unlike the trichlorides, where the QTAIM delocalisation index indicates that covalency plateaus/moderately increases, An-Cl covalency decreases across the second half of the series for AnCl. We attribute this difference in behaviour to a lack of significant energy degeneracy driven covalency for the dichlorides, with the energy difference between the dichlorides' β 5f and 3p Natural Atomic Orbitals being larger than for the trichlorides. Hence we find it is not the presence of a stable +2 oxidation state, but instead the extent of energy matching between the actinide 5f orbitals and the ligand 3p, that drives covalency in the transcurium chlorides.
先前有人提出,各种超锔元素络合物中意外共价行为的出现与锕系元素后几个成员中 +2 氧化态稳定性的增加之间可能存在联系。我们最近使用计算方法研究了 AnCl,发现了后几个锕系元素中能量简并驱动共价性的证据,并且在此展示了对 AnCl 的比较研究。后者的 An-Cl 键长分为两个数据集;钍 - 镎、锔、锫和钚,镅、锎 - 锘。平均而言,两个数据集的 An-Cl 键长都减小了,但在镎和钚之间,以及在锫和锎之间有显著增加,与前一组不同(钚、镅、锎 - 锘)Cl 的键长明显大于相应的三氯化物。使用一系列自然键轨道(NBO)、自然共振理论(NRT)和分子中原子的量子理论(QTAIM)指标,分析了二氯化物键的共价性。我们发现第一组二氯化物与其三氯化物对应物相似,并且比(钚、镅、锎 - 锘)Cl 具有明显更多的共价键。我们认为二氯化物在整个系列中共价行为的这种变化是由于后期元素中 6d 轨道的参与减少(这是由于 f-d 激发能超过了所讨论的锕系离子的 d 稳定能)。此外,我们发现与三氯化物不同,QTAIM 离域指数表明三氯化物中共价性达到平稳/适度增加,而对于 AnCl,An-Cl 共价性在该系列的后半部分降低。我们将这种行为差异归因于二氯化物缺乏显著的能量简并驱动的共价性,二氯化物的 β 5f 和 3p 自然原子轨道之间的能量差大于三氯化物。因此我们发现,驱动超锔元素氯化物中共价性的不是稳定 +2 氧化态的存在,而是锕系元素 5f 轨道与配体 3p 之间的能量匹配程度。