Sengupta Rajarshi, Tikekar Mukul D, Delaney Kris T, Villet Michael C, Fredrickson Glenn H
Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA, USA.
DSM Materials Science Center, Royal DSM, Geleen, The Netherlands.
Soft Matter. 2022 Apr 13;18(15):2936-2950. doi: 10.1039/d2sm00150k.
Reactive blending of immiscible polymers is an important process for synthesizing polymer blends with superior properties. We use a phase-field model to understand reaction dynamics and morphology evolution by diffusive transport in layered films of incompatible, end-reactive polymers. We thoroughly investigate this phenomenon over a large parameter space of interface shapes, layer thicknesses, reaction rates specified by a Damkohler number (Da), and Flory-Huggins interaction parameter (), under static conditions with no external fields. For films of the same thickness, the dynamics of the system is not significantly influenced by the length of the film or the initial shape of the interface. The interface between the polymers is observed to roughen, leading to the formation of a spontaneous emulsion. The reaction progresses slower and the interface roughens later for thicker films, and systems with higher . Increasing Da increases the reaction rate and hastens the onset of roughening. The quasi-static interfacial tension decreases with the extent of reaction, but does not become vanishingly small or negative at the onset of roughening. Simulations with reversible reactions and systems where only a fraction of the homopolymers have reactive end groups show that a critical diblock (reaction product) concentration exists, below which interfacial roughening and spontaneous emulsification is not observed. We also demonstrate that thermal fluctuations accelerate the onset of interfacial roughening, and help sustain the system in an emulsified state.
不相容聚合物的反应共混是合成具有优异性能的聚合物共混物的重要过程。我们使用相场模型,通过扩散传输来理解不相容的端反应性聚合物层状薄膜中的反应动力学和形态演变。我们在无外部场的静态条件下,在界面形状、层厚度、由达姆科勒数(Da)指定的反应速率以及弗洛里 - 哈金斯相互作用参数()的大参数空间内全面研究了这一现象。对于相同厚度的薄膜,系统动力学不受薄膜长度或界面初始形状的显著影响。观察到聚合物之间的界面变得粗糙,导致自发乳液的形成。对于较厚的薄膜以及具有较高的系统,反应进行得较慢且界面粗糙出现得较晚。增加Da会提高反应速率并加速粗糙化的开始。准静态界面张力随反应程度降低,但在粗糙化开始时不会变得极小或为负。对可逆反应以及只有一部分均聚物具有反应性端基的系统进行的模拟表明,存在一个临界双嵌段(反应产物)浓度,低于该浓度时未观察到界面粗糙化和自发乳化现象。我们还证明热涨落会加速界面粗糙化的开始,并有助于使系统维持在乳化状态。