Ahmed Naushad, Sharma Tanu, Spillecke Lena, Koo Changhyun, Ansari Kamal Uddin, Tripathi Shalini, Caneschi Andrea, Klingeler Rüdiger, Rajaraman Gopalan, Shanmugam Maheswaran
Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, Maharashtra, India.
Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany.
Inorg Chem. 2022 Apr 11;61(14):5572-5587. doi: 10.1021/acs.inorgchem.2c00065. Epub 2022 Mar 29.
The mechanistic investigations between Cu(II) and the anisotropic lanthanides (Ln(III)) are not much explored to date. This is due to the complicated energy spectrum which arises due to the orbital angular momentum of anisotropic lanthanides. Interestingly, the exchange coupling in Ln(III)-Cu(II) systems was found to be antiferromagnetic for <4f metal ions and ferromagnetic for ≥4f metal ions, while the net magnitude of strength gradually decreases moving from to . While this is established in several examples, the reason for this intriguing trend is not rationalized. In this article, we have taken up these challenging tasks by synthesizing a family of complexes with the general molecular formula CuLn(HL)(NO), where Ln = La (), Ce (), Pr (), Gd (), Tb (), Dy (), and Ho () and HL = CHNO; (2-methoxy-6-[()-2'-hydroxymethyl-phenyliminomethyl]-phenolate) is a monodeprotonated tridentate Schiff base ligand. Detailed dc magnetic susceptibility measurements performed for all the complexes reveal that the Cu(II) ion is coupled ferromagnetically to the respective Ln(III) ion, which has more than seven electrons in the 4f shell, while an antiferromagnetic coupling is witnessed if Ln(III) has less than seven electrons. The strength of the exchange coupling constant was quantitatively determined for representative complexes from the high-field/high-frequency electron paramagnetic resonance spectroscopy which follows the order of (1.50(10) cm) > (1.18(10) cm) > (0.56(10) cm based on the spin Hamiltonian. The increased axiality in and due to the presence of 3d ions in the near vicinity of an oblate ion and the increased exchange coupling strength between Cu(II) and Tb(III) or Dy(III) is the ideal combination to stabilize magnetic bistability in these complexes in the absence of an external magnetic field with the effective energy barrier of 15.7 K (τ = 2.49 × 10 s) and 12.6 K (τ = 1.70 × 10 s), respectively. To rationalize this experimental trend, we have performed CASSCF and DFT calculations. To compute the values, we have employed POLY_ANISO routines and utilized the computed data to establish the generic mechanism of magnetic coupling in {Cu-Ln-Cu} motifs. These mechanistic findings reveal the importance of 5d orbitals and their energy with respect to the d orbital of Cu(II) ions in controlling the magnetic coupling of {Cu-4f} complexes.
迄今为止,关于铜(II)与各向异性镧系元素(Ln(III))之间的机理研究尚未充分开展。这是由于各向异性镧系元素的轨道角动量导致了复杂的能谱。有趣的是,在Ln(III)-Cu(II)体系中,发现对于<4f金属离子,交换耦合是反铁磁性的,而对于≥4f金属离子是铁磁性的,同时耦合强度的净大小从[具体元素1]到[具体元素2]逐渐减小。虽然在几个例子中已证实这一点,但这种有趣趋势的原因尚未得到合理的解释。在本文中,我们通过合成一系列通式为CuLn(HL)(NO)的配合物来应对这些具有挑战性的任务,其中Ln = La([具体元素符号1])、Ce([具体元素符号2])、Pr([具体元素符号3])、Gd([具体元素符号4])、Tb([具体元素符号5])、Dy([具体元素符号6])和Ho([具体元素符号7]),HL = CHNO;(2 - 甲氧基 - 6 - [([具体构型]) - 2'-羟甲基 - 苯基亚氨基甲基] - 苯酚盐)是一种单去质子化的三齿席夫碱配体。对所有配合物进行的详细直流磁化率测量表明,Cu(II)离子与各自的Ln(III)离子呈铁磁性耦合,其中4f壳层中有超过七个电子的Ln(III)离子;而当Ln(III)的电子数少于七个时,则观察到反铁磁性耦合。通过高场/高频电子顺磁共振光谱法对代表性配合物定量测定了交换耦合常数的强度,基于自旋哈密顿量,其顺序为[具体配合物1](1.50(10) cm)>[具体配合物2](1.18(10) cm)>[具体配合物3](0.56(10) cm)。由于在扁球形离子附近存在3d离子,[具体配合物1]和[具体配合物2]中轴向性增加,以及Cu(II)与Tb(III)或Dy(III)之间交换耦合强度增加,这是在没有外部磁场的情况下使这些配合物中磁双稳性稳定的理想组合,有效能垒分别为15.7 K(τ = 2.49 × 10 s)和12.6 K(τ = 1.70 × 10 s)。为合理解释这一实验趋势,我们进行了完全活性空间自洽场(CASSCF)和密度泛函理论(DFT)计算。为计算[具体数值],我们采用了POLY_ANISO程序,并利用计算数据建立了{Cu - Ln - Cu}结构单元中磁耦合的一般机制。这些机理研究结果揭示了5d轨道及其能量相对于Cu(II)离子的d轨道在控制{Cu - 4f}配合物磁耦合方面的重要性。