Suppr超能文献

开发一种算法,通过集成医疗保健系统,使用电子病历来识别癌症病史。

Developing an algorithm across integrated healthcare systems to identify a history of cancer using electronic medical records.

机构信息

Center for Research and Evaluation, Kaiser Permanente Georgia, Atlanta, Georgia, USA.

Institute for Health Research, Kaiser Permanente Colorado, Aurora, Colorado, USA.

出版信息

J Am Med Inform Assoc. 2022 Jun 14;29(7):1217-1224. doi: 10.1093/jamia/ocac044.

Abstract

OBJECTIVE

Tumor registries in integrated healthcare systems (IHCS) have high precision for identifying incident cancer but often miss recently diagnosed cancers or those diagnosed outside of the IHCS. We developed an algorithm using the electronic medical record (EMR) to identify people with a history of cancer not captured in the tumor registry to identify adults, aged 40-65 years, with no history of cancer.

MATERIALS AND METHODS

The algorithm was developed at Kaiser Permanente Colorado, and then applied to 7 other IHCS. We included tumor registry data, diagnosis and procedure codes, chemotherapy files, oncology encounters, and revenue data to develop the algorithm. Each IHCS adapted the algorithm to their EMR data and calculated sensitivity and specificity to evaluate the algorithm's performance after iterative chart review.

RESULTS

We included data from over 1.26 million eligible people across 8 IHCS; 55 601 (4.4%) were in a tumor registry, and 44848 (3.5%) had a reported cancer not captured in a registry. The common attributes of the final algorithm at each site were diagnosis and procedure codes. The sensitivity of the algorithm at each IHCS was 90.65%-100%, and the specificity was 87.91%-100%.

DISCUSSION

Relying only on tumor registry data would miss nearly half of the identified cancers. Our algorithm was robust and required only minor modifications to adapt to other EMR systems.

CONCLUSION

This algorithm can identify cancer cases regardless of when the diagnosis occurred and may be useful for a variety of research applications or quality improvement projects around cancer care.

摘要

目的

综合医疗系统(IHCS)中的肿瘤登记处对于识别新发癌症具有很高的准确性,但往往会错过最近诊断的癌症或在 IHCS 之外诊断的癌症。我们开发了一种使用电子病历(EMR)的算法,以识别未被肿瘤登记处捕捉到的癌症史患者,以确定年龄在 40-65 岁之间、无癌症史的成年人。

材料和方法

该算法由 Kaiser Permanente Colorado 开发,然后应用于其他 7 个 IHCS。我们纳入了肿瘤登记处数据、诊断和程序代码、化疗文件、肿瘤学就诊和收入数据来开发该算法。每个 IHCS 都根据其 EMR 数据对算法进行了调整,并计算了敏感性和特异性,以通过迭代图表审查来评估算法的性能。

结果

我们纳入了来自 8 个 IHCS 的超过 126 万名符合条件的人群的数据;55601 人(4.4%)在肿瘤登记处,44848 人(3.5%)有报告但未被登记处捕捉到的癌症。每个站点最终算法的常见属性是诊断和程序代码。该算法在每个 IHCS 的敏感性为 90.65%-100%,特异性为 87.91%-100%。

讨论

仅依赖肿瘤登记处的数据将错过近一半的已识别癌症。我们的算法具有很强的鲁棒性,仅需进行微小修改即可适应其他 EMR 系统。

结论

该算法可以识别无论何时发生的癌症病例,可能对癌症护理的各种研究应用或质量改进项目有用。

相似文献

3

本文引用的文献

1
The "All of Us" Research Program.“All of Us”研究计划。
N Engl J Med. 2019 Aug 15;381(7):668-676. doi: 10.1056/NEJMsr1809937.
2
Precision Prevention and Early Detection of Cancer: Fundamental Principles.精准预防和癌症早期检测:基本原则。
Cancer Discov. 2018 Jul;8(7):803-811. doi: 10.1158/2159-8290.CD-17-1415. Epub 2018 Jun 15.
3
Origin, Methods, and Evolution of the Three Nurses' Health Studies.三项护士健康研究的起源、方法与演变
Am J Public Health. 2016 Sep;106(9):1573-81. doi: 10.2105/AJPH.2016.303338. Epub 2016 Jul 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验