Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, NC, USA.
Duke Clinical Research Institute, Durham, NC, USA.
J Am Med Inform Assoc. 2018 Feb 1;25(2):150-157. doi: 10.1093/jamia/ocx061.
Electronic medical record (EMR) computed algorithms allow investigators to screen thousands of patient records to identify specific disease cases. No computed algorithms have been developed to detect all cases of human immunodeficiency virus (HIV) infection using administrative, laboratory, and clinical documentation data outside of the Veterans Health Administration. We developed novel EMR-based algorithms for HIV detection and validated them in a cohort of subjects in the Duke University Health System (DUHS).
We created 2 novel algorithms to identify HIV-infected subjects. Algorithm 1 used laboratory studies and medications to identify HIV-infected subjects, whereas Algorithm 2 used International Classification of Diseases, Ninth Revision (ICD-9) codes, medications, and laboratory testing. We applied the algorithms to a well-characterized cohort of patients and validated both against the gold standard of physician chart review. We determined sensitivity, specificity, and prevalence of HIV between 2007 and 2011 in patients seen at DUHS.
A total of 172 271 patients were detected with complete data; 1063 patients met algorithm criteria for HIV infection. In all, 970 individuals were identified by both algorithms, 78 by Algorithm 1 alone, and 15 by Algorithm 2 alone. The sensitivity and specificity of each algorithm were 78% and 99%, respectively, for Algorithm 1 and 77% and 100% for Algorithm 2. The estimated prevalence of HIV infection at DUHS between 2007 and 2011 was 0.6%.
EMR-based phenotypes of HIV infection are capable of detecting cases of HIV-infected adults with good sensitivity and specificity. These algorithms have the potential to be adapted to other EMR systems, allowing for the creation of cohorts of patients across EMR systems.
电子病历(EMR)计算算法可让调查人员筛选数千份患者记录,以识别特定的疾病病例。目前还没有开发出计算算法,利用退伍军人事务部医疗保健系统(Veterans Health Administration)之外的行政、实验室和临床文件数据来检测所有人类免疫缺陷病毒(HIV)感染病例。我们开发了新的基于 EMR 的 HIV 检测算法,并在杜克大学卫生系统(Duke University Health System,DUHS)的一组研究对象中对其进行了验证。
我们创建了 2 种新的算法来识别 HIV 感染的患者。算法 1 使用实验室研究和药物来识别 HIV 感染的患者,而算法 2 使用国际疾病分类,第 9 版(ICD-9)代码、药物和实验室检测。我们将算法应用于一个特征明确的患者队列,并将其与医生图表审查的金标准进行了验证。我们确定了 2007 年至 2011 年期间在 DUHS 就诊的患者的 HIV 敏感性、特异性和患病率。
共有 172271 名患者的资料完整,其中 1063 名患者符合 HIV 感染的算法标准。共有 970 名个体通过两种算法确定,78 名通过算法 1 确定,15 名通过算法 2 确定。每个算法的敏感性和特异性分别为 78%和 99%,算法 1 为 77%和 100%。算法 2。2007 年至 2011 年期间,DUHS 的 HIV 感染估计患病率为 0.6%。
基于 EMR 的 HIV 感染表型能够以良好的敏感性和特异性检测出 HIV 感染成人的病例。这些算法有可能被改编到其他 EMR 系统中,从而在 EMR 系统之间创建患者队列。