Tvedt Haakon, Marioara Calin D, Thronsen Elisabeth, Hell Christoph, Andersen Sigmund J, Holmestad Randi
Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim, N-7491, Norway.
Materials and Nanotechnology Department, SINTEF Industry, Høgskoleringen 5, Trondheim, N-7465, Norway.
Ultramicroscopy. 2022 Jun;236:113493. doi: 10.1016/j.ultramic.2022.113493. Epub 2022 Mar 10.
When the Al-Mg-Si(-Cu) alloy system is subjected to age hardening, different types of precipitates nucleate depending on the composition and thermomechanical treatment. The main hardening precipitates extend as needles, laths or rods along the <100> directions in the aluminium matrix. It has been found that the structures of all metastable precipitates may be generalized as stacks of <100> columns, where most of these columns are replaced by solute elements. In the precipitates, a column relates to neighbour columns by a set of simple structural principles, which allows identification of species and relative longitudinal displacement over the (100) cross-section. Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) is an important tool for studying such precipitates. With the goal of analysing atomic resolution HAADF-STEM images of precipitate cross-sections in the Al-Mg-Si(-Cu) system, we have developed the stand-alone software AutomAl 6000, which features a column characterization algorithm based on the symbiosis of a statistical model and the structural principles formulated in a digraph-like framework. The software can semi-autonomously determine the 3D column positions in the image, as well as column species. In turn, AutomAl 6000 can then display, analyse and/or export the structure data. This paper describes the methodology of AutomAl 6000 and applies it on three different HAADF-STEM images, which demonstrate the methodology. The software, as well as other resources, are available at http://automal.org. The source code is also directly available from https://github.com/Haawk666/AutomAl-6000.
当Al-Mg-Si(-Cu)合金体系进行时效硬化时,根据成分和热机械处理的不同,会形成不同类型的析出相。主要的硬化析出相在铝基体中沿<100>方向呈针状、板条状或棒状延伸。研究发现,所有亚稳析出相的结构都可以概括为<100>柱的堆叠,其中大多数柱被溶质元素取代。在析出相中,一个柱与相邻柱通过一组简单的结构原理相关联,这使得能够识别析出相种类以及在(100)横截面上的相对纵向位移。像差校正高角度环形暗场扫描透射电子显微镜(HAADF-STEM)是研究此类析出相的重要工具。为了分析Al-Mg-Si(-Cu)体系中析出相横截面的原子分辨率HAADF-STEM图像,我们开发了独立软件AutomAl 6000,其特点是基于统计模型与在类似有向图框架中制定的结构原理相结合的柱表征算法。该软件可以半自动地确定图像中的三维柱位置以及柱的种类。进而,AutomAl 6000可以显示、分析和/或导出结构数据。本文描述了AutomAl 6000的方法,并将其应用于三张不同的HAADF-STEM图像,以展示该方法。该软件以及其他资源可在http://automal.org获取。源代码也可直接从https://github.com/Haawk666/AutomAl-6000获取。