Faculty of Information Science and Technology, Multimedia University, Melaka, Melaka, 75450, Malaysia.
School of Computer Sciences, Universiti Sains Malaysia, Penang, Penang, 11800, Malaysia.
F1000Res. 2021 Sep 16;10:928. doi: 10.12688/f1000research.72897.2. eCollection 2021.
Autonomous vehicles are important in smart transportation. Although exciting progress has been made, it remains challenging to design a safety mechanism for autonomous vehicles despite uncertainties and obstacles that occur dynamically on the road. Collision detection and avoidance are indispensable for a reliable decision-making module in autonomous driving. This study presents a robust approach for forward collision warning using vision data for autonomous vehicles on Malaysian public roads. The proposed architecture combines environment perception and lane localization to define a safe driving region for the ego vehicle. If potential risks are detected in the safe driving region, a warning will be triggered. The early warning is important to help avoid rear-end collision. Besides, an adaptive lane localization method that considers geometrical structure of the road is presented to deal with different road types. Precision scores of mean average precision (mAP) 0.5, mAP 0.95 and recall of 0.14, 0.06979 and 0.6356 were found in this study. Experimental results have validated the effectiveness of the proposed approach under different lighting and environmental conditions.
自动驾驶汽车在智能交通中具有重要意义。尽管已经取得了令人兴奋的进展,但在设计自动驾驶汽车的安全机制时,仍然面临着道路上动态出现的不确定性和障碍的挑战。碰撞检测和避免对于自动驾驶的可靠决策模块是不可或缺的。本研究提出了一种使用马来西亚公共道路上的视觉数据进行前方碰撞预警的稳健方法。所提出的架构结合了环境感知和车道定位,为自车定义了一个安全的驾驶区域。如果在安全驾驶区域检测到潜在风险,将触发警告。早期预警对于避免追尾碰撞非常重要。此外,还提出了一种自适应的车道定位方法,考虑了道路的几何结构,以应对不同类型的道路。本研究发现平均精度 (mAP) 0.5、mAP 0.95 和召回率 0.14、0.06979 和 0.6356 的精度分数。实验结果验证了该方法在不同光照和环境条件下的有效性。