CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China.
Microbiol Spectr. 2022 Apr 27;10(2):e0232621. doi: 10.1128/spectrum.02326-21. Epub 2022 Mar 30.
Nuclease based genome editing systems have emerged as powerful tools to drive genomic alterations and enhance genome evolution via precise engineering in the various human and microbial cells. However, error-prone DNA repair has not been well studied previously to generate diverse genomic alterations and novel phenotypes. Here, we systematically investigated the potential interplay between DNA double strand break (DSB) repair and genome editing tools, and found that modulating the DSB end resection proteins could significantly improve mutational efficiency and diversity without exogenous DNA template in yeast. Deleting , , or , or overexpressing -H125N (nuclease-dead allele of ), for DSB end resection markedly increased the efficiency of CRISPR/SpCas9 (more than 22-fold) and CRISPR/AsCpf1 (more than 30-fold)-induced mutagenesis. Deleting or overexpressing -H125N substantially diversified CRISPR/SpCas9 or AsCpf1-induced mutation 2-3-fold at locus, and 3-5-fold at locus. Thus, the error-prone DNA repair protein was employed to develop a novel mutagenic genome editing (mGE) strategy, which can increase the mutation numbers and effectively improve the ethanol/glycerol ratio of Saccharomyces cerevisiae through modulating the expression of and . This study highlighted the feasibility of potentially reshaping the capability of genome editing by regulating the different DSB repair proteins and can thus expand the application of genome editing in diversifying gene expression and enhancing genome evolution. Most of the published papers about nuclease-assisted genome editing focused on precision engineering in human cells. However, the topic of inducing mutagenesis via error-prone repair has often been ignored in yeast. In this study, we reported that perturbing DNA repair, especially modifications of the various DSB end resection-related proteins, could greatly improve the mutational efficiency and diversity, and thus functionally reshape the capability of the different genome editing tools without requiring an exogenous DNA template in yeast. Specifically, mutagenic genome editing (mGE) was developed based on CRISPR/AsCpf1 and -H125N overexpression, and used to generate promoters of different strengths more efficiently. Thus, this work provides a novel method to diversify gene expression and enhance genome evolution.
基于核酸酶的基因组编辑系统已成为强大的工具,可通过在各种人类和微生物细胞中进行精确工程,驱动基因组改变并增强基因组进化。然而,先前对于易错的 DNA 修复的研究还不够充分,无法产生多样化的基因组改变和新的表型。在这里,我们系统地研究了 DNA 双链断裂 (DSB) 修复与基因组编辑工具之间的潜在相互作用,发现调节 DSB 末端切除蛋白可以在酵母中无需外源 DNA 模板的情况下,显著提高突变效率和多样性。在酵母中,敲除、、或、或过表达 -H125N(核酸酶失活等位基因),用于 DSB 末端切除,可显著提高 CRISPR/SpCas9(超过 22 倍)和 CRISPR/AsCpf1(超过 30 倍)诱导的诱变效率。敲除或过表达 -H125N 可使 CRISPR/SpCas9 或 AsCpf1 诱导的突变在 位点多样化 2-3 倍,在 位点多样化 3-5 倍。因此,易错的 DNA 修复蛋白被用于开发一种新的诱变基因组编辑 (mGE) 策略,该策略可以通过调节和的表达,增加突变数量,并有效提高酿酒酵母的乙醇/甘油比。这项研究突出了通过调节不同的 DSB 修复蛋白来潜在重塑基因组编辑能力的可行性,从而可以扩展基因组编辑在多样化基因表达和增强基因组进化方面的应用。大多数关于核酸酶辅助基因组编辑的已发表论文都集中在人类细胞中的精确工程上。然而,在酵母中,通过易错修复诱导诱变的课题经常被忽视。在这项研究中,我们报告说,扰乱 DNA 修复,特别是各种 DSB 末端切除相关蛋白的修饰,可以极大地提高突变效率和多样性,从而无需在酵母中使用外源 DNA 模板即可在功能上重塑不同基因组编辑工具的能力。具体来说,基于 CRISPR/AsCpf1 和 -H125N 过表达开发了诱变基因组编辑 (mGE),并用于更有效地生成不同强度的启动子。因此,这项工作提供了一种多样化基因表达和增强基因组进化的新方法。