Gunnarsson William B, Xu Zhaojian, Noel Nakita K, Rand Barry P
Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States.
Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States.
ACS Appl Mater Interfaces. 2022 Aug 3;14(30):34247-34252. doi: 10.1021/acsami.2c00860. Epub 2022 Mar 30.
Perovskite light-emitting diodes (LEDs) have experienced a rapid increase in efficiency over the last several years and are now regarded as promising low-cost devices for displays and communication systems. However, it is often challenging to employ ZnO, a well-studied electron transport material, in perovskite LEDs due to chemical instability at the ZnO/perovskite interface and charge injection imbalance caused by the relatively high conductivity of ZnO. In this work, we address these problems by depositing an ultrathin AlO interlayer at the ZnO/perovskite interface, allowing the fabrication of green-emitting perovskite LEDs with a maximum luminance of 21 815 cd/m. Using atomic layer deposition, we can precisely control the AlO thickness and thus fine-tune the electron injection from ZnO, allowing us to enhance the efficiency and operational stability of our LEDs.
在过去几年中,钙钛矿发光二极管(LED)的效率迅速提高,如今被视为用于显示器和通信系统的有前景的低成本器件。然而,由于ZnO/钙钛矿界面处的化学不稳定性以及ZnO相对较高的电导率导致的电荷注入不平衡,在钙钛矿LED中使用经过充分研究的电子传输材料ZnO往往具有挑战性。在这项工作中,我们通过在ZnO/钙钛矿界面沉积超薄AlO中间层来解决这些问题,从而制造出最大亮度为21815 cd/m²的绿色发光钙钛矿LED。使用原子层沉积,我们可以精确控制AlO的厚度,进而微调从ZnO的电子注入,从而提高我们LED的效率和运行稳定性。