Suppr超能文献

通过CoS@SnS异质结工程化离子扩散用于超高倍率和稳定的钾电池

Engineering Ion Diffusion by CoS@SnS Heterojunction for Ultrahigh-Rate and Stable Potassium Batteries.

作者信息

Luo Wendi, Feng Yanhong, Shen Dongyang, Zhou Jiang, Gao Caitian, Lu Bingan

机构信息

School of Physics and Electronics, Hunan University, Changsha 410082, China.

School of Materials Science and Engineering, Central South University, Changsha 410083, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 Apr 13;14(14):16379-16385. doi: 10.1021/acsami.2c02679. Epub 2022 Mar 30.

Abstract

Transitional metal sulfides (TMSs) are considered as promising anode candidates for potassium storage because of their ultrahigh theoretical capacity and low cost. However, TMSs suffer from low electronic, ionic conductivity and significant volume expansion during potassium ion intercalation. Here, we construct a carbon-coated CoS@SnS heterojunction which effectively alleviates the volume change and improves the electrochemical performance of TMSs. The mechanism analysis and density functional theory (DFT) calculation prove the acceleration of K-ion diffusion by the built-in electric field in the CoS@SnS heterojunction. Specifically, the as-prepared material maintains 81% of its original capacity after 2000 cycles at 500 mA g. In addition, when the current density is set at 2000 mA g, it can still deliver a high discharge capacity of 210 mAh g. Moreover, the full cell can deliver a high capacity of 400 mAh g even after 150 cycles when paired with a perylene-3,4,9,10-tetracarboxydiimide (PTCDI) cathode. This work is expected to provide a material design idea dealing with the unstable and low rate capability problems of potassium-ion batteries.

摘要

过渡金属硫化物(TMSs)因其超高的理论容量和低成本,被认为是有前景的钾存储负极材料。然而,TMSs存在电子和离子导电性低以及钾离子嵌入过程中显著的体积膨胀问题。在此,我们构建了一种碳包覆的CoS@SnS异质结,它有效缓解了体积变化并改善了TMSs的电化学性能。机理分析和密度泛函理论(DFT)计算证明了CoS@SnS异质结中内建电场加速了钾离子扩散。具体而言,所制备的材料在500 mA g下循环2000次后仍保持其初始容量的81%。此外,当电流密度设置为2000 mA g时,它仍能提供210 mAh g的高放电容量。而且,与苝-3,4,9,10-四羧酸二亚胺(PTCDI)正极配对时,全电池即使在150次循环后仍能提供400 mAh g的高容量。这项工作有望为解决钾离子电池的不稳定和低倍率性能问题提供一种材料设计思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验