Suppr超能文献

预测线性聚氨酯和聚氨酯-聚脲弹性体的杨氏模量:通过物理化学建模和机器学习连接长度尺度

Predicting Young's Modulus of Linear Polyurethane and Polyurethane-Polyurea Elastomers: Bridging Length Scales with Physicochemical Modeling and Machine Learning.

作者信息

Pugar Joseph A, Gang Calvin, Huang Christine, Haider Karl W, Washburn Newell R

机构信息

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Apr 13;14(14):16568-16581. doi: 10.1021/acsami.1c24715. Epub 2022 Mar 30.

Abstract

Predicting the properties of complex polymeric materials based on monomer chemistry requires modeling physical interactions that bridge molecular, interchain, microstructure, and bulk length scales. For polyurethanes, a polymer class with global commercial and industrial significance, these multiscale challenges are intrinsic due to the thermodynamic incompatibility of the urethane and polyol-rich domains, resulting in heterogeneities from molecular to microstructural length scales. Machine learning can model patterns in data to establish a relationship between the monomer chemistry and bulk material properties, but this is made difficult by small data sets and a diverse set of monomers. Using a data set of 63 industrially relevant and complex elastomers, we demonstrate that accurate machine learning predictions are possible when monomer chemistry is used to estimate interactions at interchain length scales. Here, these features were used to accurately ( = 0.91) predict the Young's modulus of polyurethane and polyurethane-urea elastomers. Furthermore, by a query of the trained model for compositions that yield a target modulus within the range of accessible values, the capabilities of using this methodology as a design tool are demonstrated. The presented methodology could become increasingly useful in building models for materials with small data sets and may guide the interpretation of the underlying physicochemical forces.

摘要

基于单体化学来预测复杂聚合物材料的性能,需要对跨越分子、链间、微观结构和宏观长度尺度的物理相互作用进行建模。对于具有全球商业和工业重要性的聚氨酯这类聚合物,由于聚氨酯和富含多元醇的区域存在热力学不相容性,这些多尺度挑战是固有的,从而导致从分子到微观结构长度尺度的不均匀性。机器学习可以对数据中的模式进行建模,以建立单体化学与宏观材料性能之间的关系,但由于数据集较小且单体种类繁多,这一过程变得困难。使用一个包含63种具有工业相关性的复杂弹性体的数据集,我们证明,当使用单体化学来估计链间长度尺度的相互作用时,机器学习可以做出准确的预测。在此,这些特征被用于准确地( = 0.91)预测聚氨酯和聚氨酯 - 脲弹性体的杨氏模量。此外,通过查询训练模型以获取在可及值范围内产生目标模量的组成,证明了将该方法用作设计工具的能力。所提出的方法在为小数据集材料构建模型时可能会变得越来越有用,并可能指导对潜在物理化学力的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验