Department of Chemistry, University of California, Berkeley, California 94720, United States.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Am Chem Soc. 2022 Apr 13;144(14):6298-6310. doi: 10.1021/jacs.1c12889. Epub 2022 Mar 30.
Understanding how the complex interplay among excitonic interactions, vibronic couplings, and reorganization energy determines coherence-enabled transport mechanisms is a grand challenge with both foundational implications and potential payoffs for energy science. We use a combined experimental and theoretical approach to show how a modest change in structure may be used to modify the exciton delocalization, tune electronic and vibrational coherences, and alter the mechanism of exciton transfer in covalently linked cofacial Zn-porphyrin dimers ( linked and linked ). While both and feature zinc porphyrins linked by a 1,2-phenylene bridge, differences in the interporphyrin connectivity set the lateral shift between macrocycles, reducing electronic coupling in and resulting in a localized exciton. Pump-probe experiments show that the exciton dynamics is faster by almost an order of magnitude in the strongly coupled dimer, and two-dimensional electronic spectroscopy (2DES) identifies a vibronic coherence that is absent in . Theoretical studies indicate how the interchromophore interactions in these structures, and their system-bath couplings, influence excitonic delocalization and vibronic coherence-enabled rapid exciton transport dynamics. Real-time path integral calculations reproduce the exciton transfer kinetics observed experimentally and find that the linking-modulated exciton delocalization strongly enhances the contribution of vibronic coherences to the exciton transfer mechanism, and that this coherence accelerates the exciton transfer dynamics. These benchmark molecular design, 2DES, and theoretical studies provide a foundation for directed explorations of nonclassical effects on exciton dynamics in multiporphyrin assemblies.
了解激子相互作用、振子耦合和重组能之间的复杂相互作用如何决定相干促进的输运机制,是一个具有基础意义和潜在收益的能源科学的重大挑战。我们使用综合实验和理论方法来展示结构的适度变化如何用于改变激子离域、调整电子和振动相干性,并改变共价连接的共面锌卟啉二聚体(linked 和 linked)中的激子转移机制。虽然和都具有通过 1,2-亚苯基桥连接的锌卟啉,但卟啉间连接的差异设定了大环之间的横向位移,降低了 linked 中的电子耦合,导致激子局域化。泵浦探测实验表明,在强耦合的 linked 二聚体中,激子动力学快了近一个数量级,二维电子光谱(2DES)确定了在 中不存在的振子相干性。理论研究表明,这些结构中的发色团间相互作用及其与体系-浴耦合如何影响激子离域和振子相干性促进的快速激子输运动力学。实时路径积分计算再现了实验中观察到的激子转移动力学,并发现连接调制的激子离域强烈增强了振子相干性对激子转移机制的贡献,并且这种相干性加速了激子转移动力学。这些基准的分子设计、2DES 和理论研究为在多卟啉组装体中探索非经典效应对激子动力学的影响提供了基础。