Suppr超能文献

Video Object Segmentation Using Kernelized Memory Network With Multiple Kernels.

作者信息

Seong Hongje, Hyun Junhyuk, Kim Euntai

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2595-2612. doi: 10.1109/TPAMI.2022.3163375. Epub 2023 Jan 6.

Abstract

Semi-supervised video object segmentation (VOS) is to predict the segment of a target object in a video when a ground truth segmentation mask for the target is given in the first frame. Recently, space-time memory networks (STM) have received significant attention as a promising approach for semi-supervised VOS. However, an important point has been overlooked in applying STM to VOS: The solution (=STM) is non-local, but the problem (=VOS) is predominantly local. To solve this mismatch between STM and VOS, we propose new VOS networks called kernelized memory network (KMN) and KMN with multiple kernels (KMN ). Our networks conduct not only Query-to-Memory matching but also Memory-to-Query matching. In Memory-to-Query matching, a kernel is employed to reduce the degree of non-localness of the STM. In addition, we present a Hide-and-Seek strategy in pre-training to handle occlusions effectively. The proposed networks surpass the state-of-the-art results on standard benchmarks by a significant margin (+4% in J on DAVIS 2017 test-dev set). The runtimes of our proposed KMN and KMN on DAVIS 2016 validation set are 0.12 and 0.13 seconds per frame, respectively, and the two networks have similar computation times to STM.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验