Rashid Reem B, Evans Austin M, Hall Lyndon A, Dasari Raghunath R, Roesner Emily K, Marder Seth R, D'Allesandro Deanna M, Dichtel William R, Rivnay Jonathan
Dept. of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
Adv Mater. 2022 May;34(21):e2110703. doi: 10.1002/adma.202110703. Epub 2022 Apr 21.
Organic electrochemical transistors (OECTs) are devices with broad potential in bioelectronic sensing, circuits, and neuromorphic hardware. Their unique properties arise from the use of organic mixed ionic/electronic conductors (OMIECs) as the active channel. Typical OMIECs are linear polymers, where defined and controlled microstructure/morphology, and reliable characterization of transport and charging can be elusive. Semiconducting two-dimensional polymers (2DPs) present a new avenue in OMIEC materials development, enabling electronic transport along with precise control of well-defined channels ideal for ion transport/intercalation. To this end, a recently reported 2DP, TIIP, is synthesized and patterned at 10 µm resolution as the channel of a transistor. The TIIP films demonstrate textured microstructure and show semiconducting properties with accessible oxidation states. Operating in an aqueous electrolyte, the 2DP-OECT exhibits a device-scale hole mobility of 0.05 cm V s and a µC* figure of merit of 1.75 F cm V s . 2DP OMIECs thus offer new synthetic degrees of freedom to control OECT performance and may enable additional opportunities such as ion selectivity or improved stability through reduced morphological modulation during device operation.
有机电化学晶体管(OECTs)是在生物电子传感、电路和神经形态硬件方面具有广泛潜力的器件。它们的独特性能源于使用有机混合离子/电子导体(OMIECs)作为有源通道。典型的OMIECs是线性聚合物,其明确且可控的微观结构/形态以及可靠的传输和充电特性可能难以捉摸。半导体二维聚合物(2DPs)为OMIEC材料的发展提供了一条新途径,能够实现电子传输,并精确控制适合离子传输/嵌入的明确通道。为此,一种最近报道的2DP,即TIIP,被合成并以10 µm的分辨率图案化,作为晶体管的通道。TIIP薄膜呈现出纹理化的微观结构,并显示出具有可及氧化态的半导体特性。在水性电解质中运行时,2DP - OECT表现出0.05 cm² V⁻¹ s⁻¹的器件级空穴迁移率和1.75 F cm⁻² V⁻¹ s⁻¹的µC*品质因数。因此,2DP OMIECs为控制OECT性能提供了新的合成自由度,并可能带来诸如离子选择性或通过减少器件运行期间的形态调制来提高稳定性等更多机会。