Suppr超能文献

带电粒子治疗中运动和解剖变异的管理:过去、现在与未来

Management of Motion and Anatomical Variations in Charged Particle Therapy: Past, Present, and Into the Future.

作者信息

Pakela Julia M, Knopf Antje, Dong Lei, Rucinski Antoni, Zou Wei

机构信息

Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States.

Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.

出版信息

Front Oncol. 2022 Mar 9;12:806153. doi: 10.3389/fonc.2022.806153. eCollection 2022.

Abstract

The major aim of radiation therapy is to provide curative or palliative treatment to cancerous malignancies while minimizing damage to healthy tissues. Charged particle radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability to achieve highly conformal dose distributions around the tumor volume. For these treatment modalities, uncertainties in the localization of patient anatomy due to inter- and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse range of mitigation strategies have been developed and clinically implemented in various disease sites to monitor and correct for patient motion, but much work remains. This review provides an overview of current clinical practices for inter and intra-fractional motion management in charged particle therapy, including motion control, current imaging and motion tracking modalities, as well as treatment planning and delivery techniques. We also cover progress to date on emerging technologies including particle-based radiography imaging, novel treatment delivery methods such as tumor tracking and FLASH, and artificial intelligence and discuss their potential impact towards improving or increasing the challenge of motion mitigation in charged particle therapy.

摘要

放射治疗的主要目标是为癌性恶性肿瘤提供治愈性或姑息性治疗,同时将对健康组织的损害降至最低。利用碳离子或质子的带电粒子放射治疗特别适合这项任务,因为它能够在肿瘤体积周围实现高度适形的剂量分布。对于这些治疗方式,由于分次间和分次内运动导致的患者解剖结构定位不确定性,会增加意外剂量递送的风险。已经开发出多种缓解策略并在各种疾病部位临床实施,以监测和校正患者运动,但仍有许多工作要做。本综述概述了带电粒子治疗中分次间和分次内运动管理的当前临床实践,包括运动控制、当前的成像和运动跟踪模式,以及治疗计划和递送技术。我们还介绍了包括基于粒子的射线照相成像、肿瘤跟踪和FLASH等新型治疗递送方法以及人工智能在内的新兴技术的最新进展,并讨论它们对改善或增加带电粒子治疗中运动缓解挑战的潜在影响。

相似文献

1
Management of Motion and Anatomical Variations in Charged Particle Therapy: Past, Present, and Into the Future.
Front Oncol. 2022 Mar 9;12:806153. doi: 10.3389/fonc.2022.806153. eCollection 2022.
2
Advances in 4D medical imaging and 4D radiation therapy.
Technol Cancer Res Treat. 2008 Feb;7(1):67-81. doi: 10.1177/153303460800700109.
4
Significance of intra-fractional motion for pancreatic patients treated with charged particles.
Radiat Oncol. 2018 Jun 25;13(1):120. doi: 10.1186/s13014-018-1060-8.
5
Respiratory motion management in particle therapy.
Med Phys. 2010 Feb;37(2):449-60. doi: 10.1118/1.3250856.
7
A motion model-guided 4D dose reconstruction for pencil beam scanned proton therapy.
Phys Med Biol. 2023 May 30;68(11). doi: 10.1088/1361-6560/acd518.
8
Intrafraction tumor motion monitoring and dose reconstruction for liver pencil beam scanning proton therapy.
Front Oncol. 2023 Mar 2;13:1112481. doi: 10.3389/fonc.2023.1112481. eCollection 2023.
9
Proton therapy - Present and future.
Adv Drug Deliv Rev. 2017 Jan 15;109:26-44. doi: 10.1016/j.addr.2016.11.006. Epub 2016 Dec 3.

引用本文的文献

2
Perfluorobutane Nanodroplets for the Selective Sensing and Range Verification of Carbon-Ion Radiotherapy: In Vitro Evaluation on Cells.
ACS Omega. 2025 Jun 30;10(27):29154-29165. doi: 10.1021/acsomega.5c01785. eCollection 2025 Jul 15.
3
Proton GRID and LATTICE treatment planning techniques for clinical liver SFRT treatments.
Phys Med Biol. 2025 May 19;70(11):115002. doi: 10.1088/1361-6560/add2cc.
4
Feasibility study of 4D-online monitoring of density gradients induced by lung cancer treatment using carbon ions.
Front Oncol. 2025 Feb 26;15:1502960. doi: 10.3389/fonc.2025.1502960. eCollection 2025.
8

本文引用的文献

1
Nuclear Fragmentation Imaging for Carbon-Ion Radiation Therapy Monitoring: an In Silico Study.
Int J Part Ther. 2021 Sep 1;8(4):25-36. doi: 10.14338/IJPT-20-00040.1. eCollection 2022 Spring.
2
CT-on-Rails Versus In-Room CBCT for Online Daily Adaptive Proton Therapy of Head-and-Neck Cancers.
Cancers (Basel). 2021 Nov 28;13(23):5991. doi: 10.3390/cancers13235991.
3
Physics and biomedical challenges of cancer therapy with accelerated heavy ions.
Nat Rev Phys. 2021 Dec;3(12):777-790. doi: 10.1038/s42254-021-00368-5. Epub 2021 Sep 17.
4
Clinical suitability of deep learning based synthetic CTs for adaptive proton therapy of lung cancer.
Med Phys. 2021 Dec;48(12):7673-7684. doi: 10.1002/mp.15333. Epub 2021 Nov 16.
5
Simultaneous Multiple Liver Metastasis Treated with Pencil Beam Proton Stereotactic Body Radiotherapy (SBRT).
Int J Part Ther. 2021 Apr 22;8(2):89-94. doi: 10.14338/IJPT-20-00085.1. eCollection 2021 Fall.
6
Adaptive proton therapy.
Phys Med Biol. 2021 Nov 15;66(22). doi: 10.1088/1361-6560/ac344f.
7
Intensity Modulated Proton Therapy for Hepatocellular Carcinoma: Initial Clinical Experience.
Adv Radiat Oncol. 2021 Mar 2;6(4):100675. doi: 10.1016/j.adro.2021.100675. eCollection 2021 Jul-Aug.
8
Toward MR-integrated proton therapy: modeling the potential benefits for liver tumors.
Phys Med Biol. 2021 Sep 23;66(19). doi: 10.1088/1361-6560/ac1ef2.
10
Comparison of the dosimetric accuracy of proton breast treatment plans delivered with SGRT and CBCT setups.
J Appl Clin Med Phys. 2021 Sep;22(9):153-158. doi: 10.1002/acm2.13357. Epub 2021 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验