Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
Med Phys. 2021 Dec;48(12):7673-7684. doi: 10.1002/mp.15333. Epub 2021 Nov 16.
Adaptive proton therapy (APT) of lung cancer patients requires frequent volumetric imaging of diagnostic quality. Cone-beam CT (CBCT) can provide these daily images, but x-ray scattering limits CBCT-image quality and hampers dose calculation accuracy. The purpose of this study was to generate CBCT-based synthetic CTs using a deep convolutional neural network (DCNN) and investigate image quality and clinical suitability for proton dose calculations in lung cancer patients.
A dataset of 33 thoracic cancer patients, containing CBCTs, same-day repeat CTs (rCT), planning-CTs (pCTs), and clinical proton treatment plans, was used to train and evaluate a DCNN with and without a pCT-based correction method. Mean absolute error (MAE), mean error (ME), peak signal-to-noise ratio, and structural similarity were used to quantify image quality. The evaluation of clinical suitability was based on recalculation of clinical proton treatment plans. Gamma pass ratios, mean dose to target volumes and organs at risk, and normal tissue complication probabilities (NTCP) were calculated. Furthermore, proton radiography simulations were performed to assess the HU-accuracy of sCTs in terms of range errors.
On average, sCTs without correction resulted in a MAE of 34 ± 6 HU and ME of 4 ± 8 HU. The correction reduced the MAE to 31 ± 4HU (ME to 2 ± 4HU). Average 3%/3 mm gamma pass ratios increased from 93.7% to 96.8%, when the correction was applied. The patient specific correction reduced mean proton range errors from 1.5 to 1.1 mm. Relative mean target dose differences between sCTs and rCT were below ± 0.5% for all patients and both synthetic CTs (with/without correction). NTCP values showed high agreement between sCTs and rCT (<2%).
CBCT-based sCTs can enable accurate proton dose calculations for APT of lung cancer patients. The patient specific correction method increased the image quality and dosimetric accuracy but had only a limited influence on clinically relevant parameters.
肺癌患者的自适应质子治疗(APT)需要频繁进行具有诊断质量的容积成像。锥形束 CT(CBCT)可以提供这些日常图像,但 X 射线散射限制了 CBCT 图像质量,并阻碍了剂量计算的准确性。本研究的目的是使用深度卷积神经网络(DCNN)生成基于 CBCT 的合成 CT,并研究其在肺癌患者质子剂量计算中的图像质量和临床适用性。
使用包含 33 例胸部癌症患者的数据集,其中包括 CBCT、同日重复 CT(rCT)、计划 CT(pCT)和临床质子治疗计划,来训练和评估具有和不具有基于 pCT 的校正方法的 DCNN。使用平均绝对误差(MAE)、平均误差(ME)、峰值信噪比和结构相似性来量化图像质量。临床适用性的评估基于对临床质子治疗计划的重新计算。计算伽马通过率、靶区和危及器官的平均剂量以及正常组织并发症概率(NTCP)。此外,还进行了质子射线照相模拟,以评估 sCT 在剂量范围内误差方面的 HU 准确性。
平均而言,未经校正的 sCT 导致 MAE 为 34±6HU,ME 为 4±8HU。校正将 MAE 降低至 31±4HU(ME 降低至 2±4HU)。应用校正后,平均 3%/3mm 伽马通过率从 93.7%增加到 96.8%。患者特异性校正将质子平均射程误差从 1.5 毫米降低至 1.1 毫米。对于所有患者和两种合成 CT(有/无校正),sCT 和 rCT 之间的相对平均靶区剂量差异均低于±0.5%。NTCP 值在 sCT 和 rCT 之间显示出高度一致性(<2%)。
基于 CBCT 的 sCT 可实现肺癌患者 APT 的精确质子剂量计算。患者特异性校正方法提高了图像质量和剂量计算准确性,但对临床相关参数的影响有限。