Suppr超能文献

混合模型中随机斜率在贝叶斯假设检验中的重要性。

The Importance of Random Slopes in Mixed Models for Bayesian Hypothesis Testing.

机构信息

Department of Psychology, University of Zurich.

出版信息

Psychol Sci. 2022 Apr;33(4):648-665. doi: 10.1177/09567976211046884. Epub 2022 Mar 31.

Abstract

Mixed models are gaining popularity in psychology. For frequentist mixed models, previous research showed that excluding random slopes-differences between individuals in the direction and size of an effect-from a model when they are in the data can lead to a substantial increase in false-positive conclusions in null-hypothesis tests. Here, I demonstrated through five simulations that the same is true for Bayesian hypothesis testing with mixed models, which often yield Bayes factors reflecting very strong evidence for a mean effect on the population level even if there was no such effect. Including random slopes in the model largely eliminates the risk of strong false positives but reduces the chance of obtaining strong evidence for true effects. I recommend starting analysis by testing the support for random slopes in the data and removing them from the models only if there is clear evidence against them.

摘要

混合模型在心理学中越来越受欢迎。对于频率派混合模型,先前的研究表明,当数据中存在个体在效应的方向和大小上的随机斜率差异时,将其排除在模型之外可能导致零假设检验中错误地得出大量阳性结论。在这里,我通过五个模拟实验表明,对于混合模型的贝叶斯假设检验也是如此,即使实际上没有这种效应,混合模型通常也会产生反映对总体水平的均值效应的非常有力的贝叶斯因子。在模型中包含随机斜率可以大大降低出现强假阳性的风险,但会减少获得对真实效应的有力证据的机会。我建议在分析时首先检验数据中对随机斜率的支持,如果没有明确的证据反对,就从模型中删除它们。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验