Suppr超能文献

物以类聚:用于领域自适应分割的类别分歧引导。

Birds of a Feather Flock Together: Category-Divergence Guidance for Domain Adaptive Segmentation.

出版信息

IEEE Trans Image Process. 2022;31:2878-2892. doi: 10.1109/TIP.2022.3162471. Epub 2022 Apr 8.

Abstract

Unsupervised domain adaptation (UDA) aims to enhance the generalization capability of a certain model from a source domain to a target domain. Present UDA models focus on alleviating the domain shift by minimizing the feature discrepancy between the source domain and the target domain but usually ignore the class confusion problem. In this work, we propose an Inter-class Separation and Intra-class Aggregation (ISIA) mechanism. It encourages the cross-domain representative consistency between the same categories and differentiation among diverse categories. In this way, the features belonging to the same categories are aligned together and the confusable categories are separated. By measuring the align complexity of each category, we design an Adaptive-weighted Instance Matching (AIM) strategy to further optimize the instance-level adaptation. Based on our proposed methods, we also raise a hierarchical unsupervised domain adaptation framework for cross-domain semantic segmentation task. Through performing the image-level, feature-level, category-level and instance-level alignment, our method achieves a stronger generalization performance of the model from the source domain to the target domain. In two typical cross-domain semantic segmentation tasks, i.e., GTA 5→ Cityscapes and SYNTHIA → Cityscapes, our method achieves the state-of-the-art segmentation accuracy. We also build two cross-domain semantic segmentation datasets based on the publicly available data, i.e., remote sensing building segmentation and road segmentation, for domain adaptive segmentation. Our code, models and datasets are available at https://github.com/HibiscusYB/BAFFT.

摘要

无监督领域自适应 (UDA) 的目的是增强从源域到目标域的特定模型的泛化能力。目前的 UDA 模型侧重于通过最小化源域和目标域之间的特征差异来减轻域转移,但通常忽略了类混淆问题。在这项工作中,我们提出了一种类间分离和类内聚合 (ISIA) 的机制。它鼓励相同类别之间的跨域代表性一致性和不同类别之间的差异。通过这种方式,属于同一类别的特征被对齐在一起,混淆的类别被分离。通过测量每个类别的对齐复杂性,我们设计了一种自适应加权实例匹配 (AIM) 策略,以进一步优化实例级别的自适应。基于我们提出的方法,我们还提出了一个分层的无监督领域自适应框架,用于跨域语义分割任务。通过执行图像级、特征级、类别级和实例级的对齐,我们的方法实现了从源域到目标域的模型更强的泛化性能。在两个典型的跨域语义分割任务,即 GTA5→Cityscapes 和 SYNTHIA→Cityscapes 中,我们的方法达到了最先进的分割精度。我们还基于公开可用的数据构建了两个跨域语义分割数据集,即遥感建筑分割和道路分割,用于领域自适应分割。我们的代码、模型和数据集可以在 https://github.com/HibiscusYB/BAFFT 上找到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验