Suppr超能文献

发育中面颅骨骼中软骨凝聚的模式。

Patterning of cartilaginous condensations in the developing facial skeleton.

机构信息

Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.

Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.

出版信息

Dev Biol. 2022 Jun;486:44-55. doi: 10.1016/j.ydbio.2022.03.010. Epub 2022 Mar 28.

Abstract

Adult endochondral bones are prefigured in the embryo as cellular condensations within fields of more loosely distributed skeletal progenitors. How these early condensations are initiated and shaped has remained enigmatic, despite the wealth of research on later stages of cartilage differentiation and endochondral ossification. Using the simple larval zebrafish facial skeleton as a model, we reevaluate the involvement of the master cartilage regulator Sox9 in shaping facial condensations and find it to be largely dispensable. We then use new lineage-tracing tools to definitively show that precartilaginous condensations originate from neighboring clusters of cells termed mesenchymal condensations. These cartilage-generating mesenchymal condensations express a cohort of transcription factors that are also expressed in odontogenic mesenchyme in mammals, including barx1, lhx6a/8a, and pax9. We hypothesized that the position of each mesenchymal condensation determines the axis of growth of its corresponding precartilaginous condensation, thus influencing its final shape. Consistent with this idea, we find that positive Fgf and inhibitory Jagged-Notch signals intersect to precisely position a mesenchymal condensation in the dorsal half of the second pharyngeal arch, with loss of pathway function leading to predictable shape changes in the resulting cartilage element. Deciphering the full array of signals that control the spatial distribution of mesenchymal condensations and regulate their maturation into precartilaginous condensations thus offers a promising approach for understanding the origins of skeletal form.

摘要

成人软骨内成骨骨骼在胚胎中预先形成,作为细胞凝聚物,存在于更疏松分布的骨骼祖细胞区域内。尽管对软骨分化和软骨内骨化的后期阶段进行了大量研究,但这些早期凝聚物是如何启动和形成的仍然是个谜。利用简单的幼虫斑马鱼面部骨骼作为模型,我们重新评估了主软骨调节因子 Sox9 在塑造面部凝聚物中的作用,发现它在很大程度上是可有可无的。然后,我们使用新的谱系追踪工具明确表明,软骨前凝聚物源自相邻的细胞簇,称为间充质凝聚物。这些产生软骨的间充质凝聚物表达了一组转录因子,这些转录因子在哺乳动物的牙源性间质中也有表达,包括 barx1、lhx6a/8a 和 pax9。我们假设每个间充质凝聚物的位置决定了其相应软骨前凝聚物生长的轴,从而影响其最终形状。与这个想法一致,我们发现阳性 Fgf 和抑制性 Jagged-Notch 信号相交,精确地将一个间充质凝聚物定位在第二咽弓的背侧半部分,信号通路功能的丧失导致形成的软骨元素出现可预测的形状变化。因此,解析控制间充质凝聚物空间分布并调节其成熟为软骨前凝聚物的全套信号,为理解骨骼形态的起源提供了一种很有前途的方法。

相似文献

1
Patterning of cartilaginous condensations in the developing facial skeleton.
Dev Biol. 2022 Jun;486:44-55. doi: 10.1016/j.ydbio.2022.03.010. Epub 2022 Mar 28.
2
Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face.
PLoS Genet. 2016 Apr 8;12(4):e1005967. doi: 10.1371/journal.pgen.1005967. eCollection 2016 Apr.
4
5
barx1 is necessary for ectomesenchyme proliferation and osteochondroprogenitor condensation in the zebrafish pharyngeal arches.
Dev Biol. 2008 Sep 1;321(1):101-10. doi: 10.1016/j.ydbio.2008.06.004. Epub 2008 Jun 13.
7
barx1 represses joints and promotes cartilage in the craniofacial skeleton.
Development. 2013 Jul;140(13):2765-75. doi: 10.1242/dev.090639. Epub 2013 May 22.
8
Hes1 marks peri-condensation mesenchymal cells that generate both chondrocytes and perichondrial cells in early bone development.
J Biol Chem. 2023 Jun;299(6):104805. doi: 10.1016/j.jbc.2023.104805. Epub 2023 May 11.
9
An essential role for zebrafish Fgfrl1 during gill cartilage development.
Mech Dev. 2006 Dec;123(12):925-40. doi: 10.1016/j.mod.2006.08.006. Epub 2006 Aug 24.
10
Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2.
J Cell Physiol. 1999 Sep;180(3):314-24. doi: 10.1002/(SICI)1097-4652(199909)180:3<314::AID-JCP2>3.0.CO;2-Y.

引用本文的文献

1
A potential role of Fgf3 for epibranchial formation in zebrafish.
Front Cell Dev Biol. 2025 Aug 20;13:1652723. doi: 10.3389/fcell.2025.1652723. eCollection 2025.
2
Wnt5a and Notum influence the temporal dynamics of cartilaginous mesenchymal condensations in developing trachea.
Front Cell Dev Biol. 2025 Apr 9;13:1523833. doi: 10.3389/fcell.2025.1523833. eCollection 2025.
3
Nkx2.7 is a conserved regulator of craniofacial development.
Nat Commun. 2025 Apr 23;16(1):3802. doi: 10.1038/s41467-025-58821-3.
4
Pax1a-EphrinB2a pathway in the first pharyngeal pouch controls hyomandibular plate formation by promoting chondrocyte formation in zebrafish.
Front Cell Dev Biol. 2025 Mar 5;13:1482906. doi: 10.3389/fcell.2025.1482906. eCollection 2025.
7
Exploring Omega-3's Impact on the Expression of Bone-Related Genes in Meagre ().
Biomolecules. 2023 Dec 31;14(1):56. doi: 10.3390/biom14010056.
9
Knockout in Zebrafish Causes Abnormal Craniofacial Chondrogenesis by Regulating FGF Pathway.
Genes (Basel). 2023 Mar 30;14(4):838. doi: 10.3390/genes14040838.
10
Distinct and redundant roles for zebrafish genes during mineralization and craniofacial patterning.
Front Endocrinol (Lausanne). 2022 Dec 12;13:1033843. doi: 10.3389/fendo.2022.1033843. eCollection 2022.

本文引用的文献

1
Candidate positive targets of LHX6 and LHX8 transcription factors in the developing upper jaw.
Gene Expr Patterns. 2022 Mar;43:119227. doi: 10.1016/j.gep.2021.119227. Epub 2021 Nov 30.
2
3
Elucidating the early signaling cues involved in zebrafish chondrogenesis and cartilage morphology.
J Exp Zool B Mol Dev Evol. 2021 Jan;336(1):18-31. doi: 10.1002/jez.b.23012. Epub 2020 Nov 12.
4
Evolution of vertebrate gill covers via shifts in an ancient Pou3f3 enhancer.
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24876-24884. doi: 10.1073/pnas.2011531117. Epub 2020 Sep 21.
5
Regulation and function of SOX9 during cartilage development and regeneration.
Semin Cancer Biol. 2020 Dec;67(Pt 1):12-23. doi: 10.1016/j.semcancer.2020.04.008. Epub 2020 May 4.
6
SOX9 in cartilage development and disease.
Curr Opin Cell Biol. 2019 Dec;61:39-47. doi: 10.1016/j.ceb.2019.07.008. Epub 2019 Aug 2.
7
Fibroblast Growth Factor Receptors Function Redundantly During Zebrafish Embryonic Development.
Genetics. 2019 Aug;212(4):1301-1319. doi: 10.1534/genetics.119.302345. Epub 2019 Jun 7.
8
Genetic compensation triggered by mutant mRNA degradation.
Nature. 2019 Apr;568(7751):193-197. doi: 10.1038/s41586-019-1064-z. Epub 2019 Apr 3.
9
BMP signaling is required for nkx2.3-positive pharyngeal pouch progenitor specification in zebrafish.
PLoS Genet. 2019 Feb 14;15(2):e1007996. doi: 10.1371/journal.pgen.1007996. eCollection 2019 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验