Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
Dev Biol. 2022 Jun;486:44-55. doi: 10.1016/j.ydbio.2022.03.010. Epub 2022 Mar 28.
Adult endochondral bones are prefigured in the embryo as cellular condensations within fields of more loosely distributed skeletal progenitors. How these early condensations are initiated and shaped has remained enigmatic, despite the wealth of research on later stages of cartilage differentiation and endochondral ossification. Using the simple larval zebrafish facial skeleton as a model, we reevaluate the involvement of the master cartilage regulator Sox9 in shaping facial condensations and find it to be largely dispensable. We then use new lineage-tracing tools to definitively show that precartilaginous condensations originate from neighboring clusters of cells termed mesenchymal condensations. These cartilage-generating mesenchymal condensations express a cohort of transcription factors that are also expressed in odontogenic mesenchyme in mammals, including barx1, lhx6a/8a, and pax9. We hypothesized that the position of each mesenchymal condensation determines the axis of growth of its corresponding precartilaginous condensation, thus influencing its final shape. Consistent with this idea, we find that positive Fgf and inhibitory Jagged-Notch signals intersect to precisely position a mesenchymal condensation in the dorsal half of the second pharyngeal arch, with loss of pathway function leading to predictable shape changes in the resulting cartilage element. Deciphering the full array of signals that control the spatial distribution of mesenchymal condensations and regulate their maturation into precartilaginous condensations thus offers a promising approach for understanding the origins of skeletal form.
成人软骨内成骨骨骼在胚胎中预先形成,作为细胞凝聚物,存在于更疏松分布的骨骼祖细胞区域内。尽管对软骨分化和软骨内骨化的后期阶段进行了大量研究,但这些早期凝聚物是如何启动和形成的仍然是个谜。利用简单的幼虫斑马鱼面部骨骼作为模型,我们重新评估了主软骨调节因子 Sox9 在塑造面部凝聚物中的作用,发现它在很大程度上是可有可无的。然后,我们使用新的谱系追踪工具明确表明,软骨前凝聚物源自相邻的细胞簇,称为间充质凝聚物。这些产生软骨的间充质凝聚物表达了一组转录因子,这些转录因子在哺乳动物的牙源性间质中也有表达,包括 barx1、lhx6a/8a 和 pax9。我们假设每个间充质凝聚物的位置决定了其相应软骨前凝聚物生长的轴,从而影响其最终形状。与这个想法一致,我们发现阳性 Fgf 和抑制性 Jagged-Notch 信号相交,精确地将一个间充质凝聚物定位在第二咽弓的背侧半部分,信号通路功能的丧失导致形成的软骨元素出现可预测的形状变化。因此,解析控制间充质凝聚物空间分布并调节其成熟为软骨前凝聚物的全套信号,为理解骨骼形态的起源提供了一种很有前途的方法。