Felici Alessia, Schlich Michele, Di Mascolo Daniele, Goldoni Luca, Lisa Palange Anna, Decuzzi Paolo
Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy; Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy.
Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy; Department of Life and Environmental Sciences, Università degli Studi di Cagliari, 09124 Cagliari, Italy.
Eur J Pharm Biopharm. 2022 May;174:90-100. doi: 10.1016/j.ejpb.2022.03.011. Epub 2022 Mar 28.
Maximizing loading while modulating the release of therapeutic molecules from nanoparticles and implantable drug delivery systems is the key to successfully address deadly diseases like brain cancer. Here, four different conjugates of the potent chemotherapeutic molecule docetaxel (DTXL)were realized to optimize the pharmacological properties of 1,000 × 400 nmDiscoidal PolymericNanoconstructs(DPNs). DTXL was covalently linked to poly-(ethylene) glycol(PEG)chains of different molecular weights, namely 350, 550 and 1,000 Da, and oleic acid (OA). After extensive physico-chemical and pharmacological characterizations, the conjugate PEG-DTXL showedan optimal compromise between loading and sustained release out of DPNs, as opposed to the insufficient loading of PEG-DTXL and PEG-DTXL and the excessively slow release of OA-DTXL. Not surprisingly, viability tests conducted on U87-MG cells showed a delay in cytotoxic activity for the DTXL conjugates compared to free DTXL within the first 48 h. However, PEG-DTXL returned an IC value of ∼ 10 nMat 72 h, which is comparable to free DTXL.In mice bearing orthotopically implanted U87-MG cells, the intravenous administration of PEG-DTXL loaded DPNs doubled the overall animal survival (52.5 days) as compared to temozolomide (27 days) and the untreated controls (32 days). Collectively, these results continue to demonstrate that the therapeutic efficacy of nanoparticles can be boosted by rationally designing drug conjugates-particle complexes for optimal loading and release profiles.
在调节纳米颗粒和可植入药物递送系统中治疗性分子释放的同时实现最大负载,是成功攻克脑癌等致命疾病的关键。在此,制备了四种不同的强效化疗分子多西他赛(DTXL)共轭物,以优化1000×400nm盘状聚合物纳米结构(DPN)的药理性质。DTXL与不同分子量(即350、550和1000Da)的聚乙二醇(PEG)链以及油酸(OA)共价连接。经过广泛的物理化学和药理学表征,与PEG-DTXL和PEG-DTXL负载不足以及OA-DTXL释放过慢相反,共轭物PEG-DTXL在DPN的负载和持续释放之间表现出最佳折衷。不出所料,对U87-MG细胞进行的活力测试表明,与游离DTXL相比,DTXL共轭物在前48小时内的细胞毒性活性有所延迟。然而,PEG-DTXL在72小时时的IC值约为10nM,与游离DTXL相当。在原位植入U87-MG细胞的小鼠中,静脉注射负载PEG-DTXL的DPN使动物总体存活时间(52.5天)比替莫唑胺(27天)和未治疗的对照组(32天)增加了一倍。总体而言,这些结果继续证明,通过合理设计药物共轭物-颗粒复合物以实现最佳负载和释放曲线,可以提高纳米颗粒的治疗效果。