Suppr超能文献

ME-ACP:用于识别抗癌肽的具有集成模型的多视图神经网络。

ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides.

机构信息

Xi'an Key Laboratory of Big Data and Intelligent Vision, School of Computer Science and Technology, Xidian University, Xi'an, China.

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China.

出版信息

Comput Biol Med. 2022 Jun;145:105459. doi: 10.1016/j.compbiomed.2022.105459. Epub 2022 Mar 26.

Abstract

Cancer remains one of the most threatening diseases, which kills millions of lives every year. As a promising perspective for cancer treatments, anticancer peptides (ACPs) overcome a lot of disadvantages of traditional treatments. However, it is time-consuming and expensive to identify ACPs through conventional experiments. Hence, it is urgent and necessary to develop highly effective approaches to accurately identify ACPs in large amounts of protein sequences. In this work, we proposed a novel and effective method named ME-ACP which employed multi-view neural networks with ensemble model to identify ACPs. Firstly, we employed residue level and peptide level features preliminarily with ensemble models based on lightGBMs. Then, the outputs of lightGBM classifiers were fed into a hybrid deep neural network (HDNN) to identify ACPs. The experiments on independent test datasets demonstrated that ME-ACP achieved competitive performance on common evaluation metrics.

摘要

癌症仍然是最具威胁性的疾病之一,每年导致数百万人死亡。作为癌症治疗的一个有前途的方向,抗癌肽 (ACPs) 克服了传统治疗方法的许多缺点。然而,通过传统实验来识别 ACPs 既耗时又昂贵。因此,迫切需要开发高效的方法来在大量蛋白质序列中准确识别 ACPs。在这项工作中,我们提出了一种名为 ME-ACP 的新颖有效的方法,该方法使用具有集成模型的多视图神经网络来识别 ACPs。首先,我们使用残基水平和肽水平特征,并基于 lightGBMs 构建集成模型。然后,将 lightGBM 分类器的输出输入到混合深度神经网络 (HDNN) 中以识别 ACPs。在独立测试数据集上的实验表明,ME-ACP 在常用评估指标上表现出了有竞争力的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验