Suppr超能文献

血管内超声中的级联学习:手动回撤中冠状动脉支架的描绘

Cascaded learning in intravascular ultrasound: coronary stent delineation in manual pullbacks.

作者信息

Wissel Tobias, Riedl Katharina A, Schaefers Klaus, Nickisch Hannes, Brunner Fabian J, Schnellbaecher Nikolas D, Blankenberg Stefan, Seiffert Moritz, Grass Michael

机构信息

Philips Research, Hamburg, Germany.

University Heart and Vascular Center Hamburg, Department of Cardiology, Hamburg, Germany.

出版信息

J Med Imaging (Bellingham). 2022 Mar;9(2):025001. doi: 10.1117/1.JMI.9.2.025001. Epub 2022 Mar 28.

Abstract

Implanting stents to re-open stenotic lesions during percutaneous coronary interventions is considered a standard treatment for acute or chronic coronary syndrome. Intravascular ultrasound (IVUS) can be used to guide and assess the technical success of these interventions. Automatically segmenting stent struts in IVUS sequences improves workflow efficiency but is non-trivial due to a challenging image appearance entailing manifold ambiguities with other structures. Manual, ungated IVUS pullbacks constitute a challenge in this context. We propose a fully data-driven strategy to first longitudinally detect and subsequently segment stent struts in IVUS frames. A cascaded deep learning approach is presented. It first trains an encoder model to classify frames as "stent," "no stent," or "no use." A segmentation model then delineates stent struts on a pixel level only in frames with a stent label. The first stage of the cascade acts as a gateway to reduce the risk for false positives in the second stage, the segmentation, which is trained on a smaller and difficult-to-annotate dataset. Training of the classification and segmentation model was based on 49,888 and 1826 frames of 74 sequences from 35 patients, respectively. The longitudinal classification yielded Dice scores of 92.96%, 82.35%, and 94.03% for the classes stent, no stent, and no use, respectively. The segmentation achieved a Dice score of 65.1% on the stent ground truth (intra-observer performance: 75.5%) and 43.5% on all frames (including frames without stent, with guidewires, calcium, or without clinical use). The latter improved to 49.5% when gating the frames by the classification decision and further increased to 57.4% with a heuristic on the plausible stent strut area. A data-driven strategy for segmenting stents in ungated, manual pullbacks was presented-the most common and practical scenario in the time-critical clinical workflow. We demonstrated a mitigated risk for ambiguities and false positive predictions.

摘要

在经皮冠状动脉介入治疗期间植入支架以重新开通狭窄病变被认为是急性或慢性冠状动脉综合征的标准治疗方法。血管内超声(IVUS)可用于指导和评估这些介入治疗的技术成功率。在IVUS序列中自动分割支架支柱可提高工作流程效率,但由于具有挑战性的图像外观以及与其他结构存在多种模糊性,这并非易事。在这种情况下,手动、非门控的IVUS回撤操作具有挑战性。我们提出了一种完全数据驱动的策略,首先纵向检测IVUS帧中的支架支柱,然后进行分割。提出了一种级联深度学习方法。它首先训练一个编码器模型,将帧分类为“有支架”、“无支架”或“无用”。然后,分割模型仅在带有支架标签的帧上对像素级别的支架支柱进行描绘。级联的第一阶段充当一个网关,以降低第二阶段(分割阶段)出现误报的风险,分割阶段是在一个较小且难以标注的数据集上进行训练的。分类模型和分割模型的训练分别基于来自35名患者的74个序列的49888帧和1826帧。纵向分类对于“有支架”、“无支架”和“无用”类别的Dice分数分别为92.96%、82.35%和94.03%。分割在支架真实图像上的Dice分数为65.1%(观察者内性能:75.5%),在所有帧(包括没有支架、有导丝、有钙化或无临床用途的帧)上的Dice分数为43.5%。当根据分类决策对帧进行门控时,后者提高到49.5%,并且通过对合理的支架支柱区域采用启发式方法进一步提高到57.4%。提出了一种用于在非门控、手动回撤操作中分割支架的数据驱动策略——这是时间紧迫的临床工作流程中最常见且实际的情况。我们证明了模糊性和误报预测的风险有所降低。

相似文献

本文引用的文献

2
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
6
Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound.冠状动脉钙化的血管内超声自动定量评估。
Ultrasound Med Biol. 2020 Oct;46(10):2801-2809. doi: 10.1016/j.ultrasmedbio.2020.04.032. Epub 2020 Jul 4.
8
Mortality From Ischemic Heart Disease.缺血性心脏病导致的死亡率
Circ Cardiovasc Qual Outcomes. 2019 Jun;12(6):e005375. doi: 10.1161/CIRCOUTCOMES.118.005375. Epub 2019 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验