Perdriat M, Huillery P, Pellet-Mary C, Hétet G
Laboratoire De Physique de l'École Normale Supérieure, École Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75231 Paris Cedex 05, France.
Phys Rev Lett. 2022 Mar 18;128(11):117203. doi: 10.1103/PhysRevLett.128.117203.
Nanodiamonds with embedded nitrogen-vacancy (NV) centers have emerged as promising magnetic field sensors, as hyperpolarizing agents in biological environments, as well as efficient tools for spin mechanics with levitating particles. These applications currently suffer from random environmental interactions with the diamond which implies poor control of the N-V direction. Here, we predict and report on a strong diamagnetism of a pure spin origin mediated by a population inversion close to a level crossing in the NV center electronic ground state. We show control of the sign of the magnetic susceptibility as well as angle locking of the crystalline axis of a microdiamond along an external magnetic field, with bright perspectives for these applications.
嵌入氮空位(NV)中心的纳米金刚石已成为有前景的磁场传感器、生物环境中的超极化剂以及用于悬浮粒子自旋力学的有效工具。目前,这些应用受到金刚石与随机环境相互作用的影响,这意味着对N-V方向的控制较差。在此,我们预测并报告了由NV中心电子基态中接近能级交叉处的粒子数反转介导的纯自旋起源的强抗磁性。我们展示了对磁化率符号的控制以及微金刚石晶轴沿外部磁场的角度锁定,这些应用具有光明的前景。