Jin Yuanbin, Shen Kunhong, Ju Peng, Gao Xingyu, Zu Chong, Grine Alejandro J, Li Tongcang
Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
Department of Physics, Washington University, St. Louis, MO, 63130, USA.
Nat Commun. 2024 Jun 13;15(1):5063. doi: 10.1038/s41467-024-49175-3.
Levitated diamond particles in high vacuum with internal spin qubits have been proposed for exploring macroscopic quantum mechanics, quantum gravity, and precision measurements. The coupling between spins and particle rotation can be utilized to study quantum geometric phase, create gyroscopes and rotational matter-wave interferometers. However, previous efforts in levitated diamonds struggled with vacuum level or spin state readouts. To address these gaps, we fabricate an integrated surface ion trap with multiple stabilization electrodes. This facilitates on-chip levitation and, for the first time, optically detected magnetic resonance measurements of a nanodiamond levitated in high vacuum. The internal temperature of our levitated nanodiamond remains moderate at pressures below 10 Torr. We have driven a nanodiamond to rotate up to 20 MHz (1.2 × 10 rpm), surpassing typical nitrogen-vacancy (NV) center electron spin dephasing rates. Using these NV spins, we observe the effect of the Berry phase arising from particle rotation. In addition, we demonstrate quantum control of spins in a rotating nanodiamond. These results mark an important development in interfacing mechanical rotation with spin qubits, expanding our capacity to study quantum phenomena.
人们提出利用高真空中具有内部自旋量子比特的悬浮金刚石颗粒来探索宏观量子力学、量子引力和精密测量。自旋与粒子旋转之间的耦合可用于研究量子几何相位、制造陀螺仪和旋转物质波干涉仪。然而,此前在悬浮金刚石方面的研究在真空水平或自旋态读出方面存在困难。为了填补这些空白,我们制造了一种带有多个稳定电极的集成表面离子阱。这有助于实现片上悬浮,并且首次实现了对高真空中悬浮纳米金刚石的光探测磁共振测量。在压力低于10托时,我们悬浮的纳米金刚石的内部温度保持适中。我们已驱动一颗纳米金刚石旋转至高达20兆赫兹(1.2×10转/分钟),超过了典型的氮空位(NV)中心电子自旋退相速率。利用这些NV自旋,我们观察到了由粒子旋转产生的贝里相位效应。此外,我们展示了对旋转纳米金刚石中自旋的量子控制。这些结果标志着在将机械旋转与自旋量子比特相连接方面取得了重要进展,扩展了我们研究量子现象的能力。