Schammer Max, Latz Arnulf, Horstmann Birger
German Aerospace Center, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany.
Helmholtz Institute Ulm, Helmholtzstraße 11, 89081 Ulm, Germany.
J Phys Chem B. 2022 Apr 14;126(14):2761-2776. doi: 10.1021/acs.jpcb.2c00215. Epub 2022 Apr 1.
Ionic liquids offer unique bulk and interfacial characteristics as battery electrolytes. Our continuum approach naturally describes the electrolyte on a macroscale. An integral formulation for the molecular repulsion, which can be quantitatively determined by both experimental and theoretical methods, models the electrolyte on the nanoscale. In this article, we perform a systematic series expansion of this integral formulation, derive a description of chemical potentials in terms of higher-order concentration gradients, and rationalize the appearance of fourth-order derivative operators in modified Poisson equations, as recently proposed in this context. In this way, we formulate a rigorous multiscale methodology from atomistic quantum chemistry calculations to phenomenological continuum models. We apply our generalized framework to ionic liquids near electrified interfaces and perform analytical asymptotic analysis. Three energy scales describing electrostatic forces between ions, molecular repulsion, and thermal motion determine the shape and width of the long-ranging charged double layer. We classify the charge screening mechanisms dependent on the system parameters as dielectricity, ion size, interaction strength, and temperature. We find that the charge density of electrochemical double layers in ionic liquids either decays exponentially, for negligible molecular repulsion, or oscillates continuously. Charge ordering across several ion diameters occurs if the repulsion between molecules is comparable with thermal energy and Coulomb interactions. Eventually, phase separation of the bulk electrolyte into ionic layers emerges once the molecular repulsion becomes dominant. Our framework predicts the exact phase boundaries among these three phases as a function of temperature, dielectricity, and ion size.
离子液体作为电池电解质具有独特的体相和界面特性。我们的连续介质方法自然地在宏观尺度上描述电解质。分子排斥的积分公式可通过实验和理论方法定量确定,该公式在纳米尺度上对电解质进行建模。在本文中,我们对这个积分公式进行了系统的级数展开,推导了基于高阶浓度梯度的化学势描述,并解释了最近在此背景下提出的修正泊松方程中四阶导数算符的出现。通过这种方式,我们制定了一种从原子量子化学计算到唯象连续介质模型的严格多尺度方法。我们将广义框架应用于带电界面附近的离子液体,并进行解析渐近分析。描述离子间静电力、分子排斥和热运动的三个能量尺度决定了长程带电双层的形状和宽度。我们根据系统参数(介电常数、离子大小、相互作用强度和温度)对电荷屏蔽机制进行分类。我们发现,对于可忽略的分子排斥,离子液体中电化学双层的电荷密度呈指数衰减,或者连续振荡。如果分子间排斥与热能和库仑相互作用相当,则会在几个离子直径范围内出现电荷有序排列。最终,一旦分子排斥占主导,体相电解质就会相分离成离子层。我们的框架预测了这三个相之间精确的相界作为温度、介电常数和离子大小的函数。