Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
Institute of Chemical Biology, Shenzhen Bay Laboratory, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
Nat Commun. 2022 Apr 1;13(1):1740. doi: 10.1038/s41467-022-29369-3.
The deubiquitinase USP1 is a critical regulator of genome integrity through the deubiquitylation of Fanconi Anemia proteins and the DNA replication processivity factor, proliferating cell nuclear antigen (PCNA). Uniquely, following UV irradiation, USP1 self-inactivates through autocleavage, which enables its own degradation and in turn, upregulates PCNA monoubiquitylation. However, the functional role for this autocleavage event during physiological conditions remains elusive. Herein, we discover that cells harboring an autocleavage-defective USP1 mutant, while still able to robustly deubiquitylate PCNA, experience more replication fork-stalling and premature fork termination events. Using super-resolution microscopy and live-cell single-molecule tracking, we show that these defects are related to the inability of this USP1 mutant to be properly recycled from sites of active DNA synthesis, resulting in replication-associated lesions. Furthermore, we find that the removal of USP1 molecules from DNA is facilitated by the DNA-dependent metalloprotease Spartan to counteract the cytotoxicity caused by "USP1-trapping". We propose a utility of USP1 inhibitors in cancer therapy based on their ability to induce USP1-trapping lesions and consequent replication stress and genomic instability in cancer cells, similar to how non-covalent DNA-protein crosslinks cause cytotoxicity by imposing steric hindrances upon proteins involved in DNA transactions.
去泛素化酶 USP1 通过去泛素化范可尼贫血蛋白和 DNA 复制过程因子增殖细胞核抗原(PCNA),是基因组完整性的关键调节因子。独特的是,在紫外线照射后,USP1 通过自身切割而自我失活,从而使其自身降解,并反过来上调 PCNA 的单泛素化。然而,在生理条件下,这种自身切割事件的功能作用仍然难以捉摸。在此,我们发现,虽然仍能有效地去泛素化 PCNA,但携带自身切割缺陷 USP1 突变体的细胞会经历更多的复制叉停滞和过早的叉终止事件。通过超分辨率显微镜和活细胞单分子追踪,我们表明这些缺陷与该 USP1 突变体无法从活跃的 DNA 合成部位正确回收有关,从而导致复制相关损伤。此外,我们发现,DNA 依赖性金属蛋白酶 Spartan 有助于将 USP1 分子从 DNA 上移除,以抵消“USP1 捕获”引起的细胞毒性。我们基于 USP1 抑制剂能够诱导 USP1 捕获损伤以及随后的复制应激和基因组不稳定性,提出了在癌症治疗中使用 USP1 抑制剂的效用,这类似于非共价 DNA-蛋白交联通过对参与 DNA 交易的蛋白施加空间位阻来引起细胞毒性。