Ranadive Arpit, Esposito Martina, Planat Luca, Bonet Edgar, Naud Cécile, Buisson Olivier, Guichard Wiebke, Roch Nicolas
Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000, Grenoble, France.
CNR-SPIN, c/o Complesso di Monte S. Angelo, via Cinthia, 80126, Napoli, Italy.
Nat Commun. 2022 Apr 1;13(1):1737. doi: 10.1038/s41467-022-29375-5.
Josephson meta-materials have recently emerged as very promising platform for superconducting quantum science and technologies. Their distinguishing potential resides in ability to engineer them at sub-wavelength scales, which allows complete control over wave dispersion and nonlinear interaction. In this article we report a versatile Josephson transmission line with strong third order nonlinearity which can be tuned from positive to negative values, and suppressed second order non linearity. As an initial implementation of this multipurpose meta-material, we operate it to demonstrate reversed Kerr phase-matching mechanism in traveling wave parametric amplification. Compared to previous state of the art phase matching approaches, this reversed Kerr phase matching avoids the presence of gaps in transmission, can reduce gain ripples, and allows in situ tunability of the amplification band over an unprecedented wide range. Besides such notable advancements in the amplification performance with direct applications to superconducting quantum computing and generation of broadband squeezing, the in-situ tunability with sign reversal of the nonlinearity in traveling wave structures, with no counterpart in optics to the best of our knowledge, opens exciting experimental possibilities in the general framework of microwave quantum optics, single-photon detection and quantum limited amplification.
约瑟夫森超材料最近已成为超导量子科学与技术中一个非常有前景的平台。它们的独特潜力在于能够在亚波长尺度上对其进行设计,这使得能够完全控制波的色散和非线性相互作用。在本文中,我们报道了一种具有强三阶非线性的通用约瑟夫森传输线,其非线性可以从正值调谐到负值,并且二阶非线性被抑制。作为这种多功能超材料的初步应用,我们利用它在行波参量放大中演示了反向克尔相位匹配机制。与先前的先进相位匹配方法相比,这种反向克尔相位匹配避免了传输中的间隙,能够减少增益纹波,并允许在前所未有的宽范围内对放大频段进行原位调谐。除了在直接应用于超导量子计算和宽带压缩产生方面的放大性能上有如此显著的进步之外,行波结构中非线性的原位调谐以及符号反转,据我们所知在光学领域没有类似情况,这在微波量子光学、单光子探测和量子极限放大的一般框架中开启了令人兴奋的实验可能性。