Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands.
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands.
Sci Rep. 2022 Apr 1;12(1):5552. doi: 10.1038/s41598-022-09496-z.
The energy transport in natural light-harvesting complexes can be explored in laboratory conditions via self-assembled supramolecular structures. One such structure arises from the amphiphilic dye C8S3 molecules, which self-assemble in an aqueous medium to a double-wall cylindrical nanotube reminiscent of natural light-harvesting complexes found in green sulphur bacteria. In this paper, we report a way to investigate the structure of inner nanotubes (NTs) alone by dissolving the outer NTs in a microfluidic setting. The resulting thermodynamically unstable system was rapidly frozen, preventing the reassembly of the outer NT from the dissolved molecules, and imaged using cryogenic transmission electron microscopy (cryo-TEM). The experimental cryo-TEM images and the molecular structure were compared by simulating high-resolution TEM images, which were based on the molecular modelling of C8S3 NTs. We found that the inner NT with outer walls removed during the flash-dilution process had a similar size to the parent double-walled NTs. Moreover, no structural inhomogeneity was observed in the inner NT after flash-dilution. This opens up exciting possibilities for functionalisation of inner NTs before the reassembly of the outer NT occurs, which can be broadly extended to modify the intra-architecture of other self-assembled nanostructures.
在实验室条件下,可以通过自组装超分子结构来探索天然光捕获复合物中的能量传输。这样的结构之一是由两亲性染料 C8S3 分子产生的,这些分子在水介质中自组装成类似于在绿色硫细菌中发现的天然光捕获复合物的双层圆柱纳米管。在本文中,我们报告了一种通过在微流设置中溶解外纳米管来单独研究内纳米管 (NT) 结构的方法。所得的热力学不稳定系统被迅速冷冻,防止溶解分子重新组装成外 NT,并使用低温透射电子显微镜 (cryo-TEM) 对其进行成像。通过模拟高分辨率 TEM 图像来比较实验 cryo-TEM 图像和分子结构,该图像基于 C8S3 NT 的分子建模。我们发现,在闪光稀释过程中外壁被去除的内 NT 与母体双层 NT 具有相似的尺寸。此外,在闪光稀释后,内 NT 中没有观察到结构不均匀性。这为外 NT 重新组装之前对内 NT 的功能化开辟了令人兴奋的可能性,这可以广泛扩展到修饰其他自组装纳米结构的内部结构。