Suppr超能文献

实时观察分子纳米管自组装过程。

Watching Molecular Nanotubes Self-Assemble in Real Time.

作者信息

Manrho Marìck, Krishnaswamy Sundar Raj, Kriete Björn, Patmanidis Ilias, de Vries Alex H, Marrink Siewert J, Jansen Thomas L C, Knoester Jasper, Pshenichnikov Maxim S

机构信息

Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

Groningen Biomolecular Sciences and Biothechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.

出版信息

J Am Chem Soc. 2023 Oct 18;145(41):22494-22503. doi: 10.1021/jacs.3c07103. Epub 2023 Oct 6.

Abstract

Molecular self-assembly is a fundamental process in nature that can be used to develop novel functional materials for medical and engineering applications. However, their complex mechanisms make the short-lived stages of self-assembly processes extremely hard to reveal. In this article, we track the self-assembly process of a benchmark system, double-walled molecular nanotubes, whose structure is similar to that found in biological and synthetic systems. We selectively dissolved the outer wall of the double-walled system and used the inner wall as a template for the self-reassembly of the outer wall. The reassembly kinetics were followed in real time using a combination of microfluidics, spectroscopy, cryogenic transmission electron microscopy, molecular dynamics simulations, and exciton modeling. We found that the outer wall self-assembles through a transient disordered patchwork structure: first, several patches of different orientations are formed, and only on a longer time scale will the patches interact with each other and assume their final preferred global orientation. The understanding of patch formation and patch reorientation marks a crucial step toward steering self-assembly processes and subsequent material engineering.

摘要

分子自组装是自然界中的一个基本过程,可用于开发用于医学和工程应用的新型功能材料。然而,其复杂的机制使得自组装过程中短暂存在的阶段极难揭示。在本文中,我们追踪了一个基准系统——双壁分子纳米管的自组装过程,其结构与生物和合成系统中的结构相似。我们选择性地溶解了双壁系统的外壁,并将内壁用作外壁自组装的模板。使用微流体、光谱学、低温透射电子显微镜、分子动力学模拟和激子建模相结合的方法实时跟踪重新组装动力学。我们发现外壁通过短暂的无序拼凑结构进行自组装:首先,形成几个不同取向的斑块,只有在更长的时间尺度上,这些斑块才会相互作用并呈现其最终的优选全局取向。对斑块形成和斑块重新取向的理解标志着朝着控制自组装过程及后续材料工程迈出的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52c4/10591479/41eb489f246d/ja3c07103_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验