Department of Chemistry, Institute for Biochemistry, University of Cologne, Germany.
Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Germany.
FEBS J. 2022 Sep;289(18):5656-5669. doi: 10.1111/febs.16450. Epub 2022 Apr 11.
Five molybdenum-dependent enzymes are known in eukaryotes. While four of them are under investigation since decades, the most recently discovered, (mitochondrial) amidoxime reducing component ((m)ARC), has only been characterized in mammals and the green algae Chlamydomonas reinhardtii. While mammalian mARCs have been shown to be involved in various signalling pathways, Chlamydomonas ARC was shown to be a nitric oxide (NO)-forming nitrite reductase. Similar to mammals, higher plants possess two ARC proteins. To test whether plant ARCs have a similar function in NO production to the function they have in C. reinhardtii, we analysed the enzymes from the model plant Arabidopsis thaliana. Both ARC1 and ARC2 from Arabidopsis could reduce N-hydroxylated compounds, while nitrite reduction to form NO could only be demonstrated for ARC2. Searching for physiological electron donors, we found that both ARC enzymes accept electrons from NADH via cytochrome b reductase and cytochrome b , but only ARC2 is able to accept electrons from nitrate reductase at all. Furthermore, arc-deficient mutant plants were similar to wildtype plants regarding growth and also nitrite-dependent NO-formation. Altogether, our results did not confirm the hypothesis that either ARC1 or ARC2 from Arabidopsis are involved in physiologically relevant nitrite-dependent NO-formation. In contrast, our data suggest that ARC1 and ARC2 have distinct, yet unknown physiological roles in higher plants.
真核生物中有五种依赖钼的酶。虽然其中四种已经研究了几十年,但最近发现的(线粒体)酰胺肟还原成分((m)ARC)仅在哺乳动物和绿藻衣藻中得到了描述。虽然哺乳动物的 mARCs 已被证明参与了各种信号通路,但衣藻的 ARC 被证明是一种形成亚硝酸盐的一氧化氮(NO)还原酶。与哺乳动物类似,高等植物具有两种 ARC 蛋白。为了测试植物 ARC 是否具有与在 C. reinhardtii 中相同的产生 NO 的功能,我们分析了模式植物拟南芥中的酶。来自拟南芥的 ARC1 和 ARC2 都可以还原 N-羟基化化合物,而只有 ARC2 可以将亚硝酸盐还原为形成 NO。在寻找生理电子供体时,我们发现两种 ARC 酶都可以通过细胞色素 b 还原酶和细胞色素 b 接受 NADH 的电子,但只有 ARC2 能够接受硝酸还原酶的电子。此外,ARC 缺陷突变体植物在生长和亚硝酸盐依赖的 NO 形成方面与野生型植物相似。总的来说,我们的结果并没有证实拟南芥的 ARC1 或 ARC2 参与生理相关的亚硝酸盐依赖的 NO 形成的假设。相反,我们的数据表明,ARC1 和 ARC2 在高等植物中具有独特的、未知的生理作用。