Suppr超能文献

- 真核生物钼代谢的参考微生物。

-A Reference Microorganism for Eukaryotic Molybdenum Metabolism.

作者信息

Tejada-Jimenez Manuel, Leon-Miranda Esperanza, Llamas Angel

机构信息

Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain.

出版信息

Microorganisms. 2023 Jun 27;11(7):1671. doi: 10.3390/microorganisms11071671.

Abstract

Molybdenum (Mo) is vital for the activity of a small but essential group of enzymes called molybdoenzymes. So far, specifically five molybdoenzymes have been discovered in eukaryotes: nitrate reductase, sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase, and mARC. In order to become biologically active, Mo must be chelated to a pterin, forming the so-called Mo cofactor (Moco). Deficiency or mutation in any of the genes involved in Moco biosynthesis results in the simultaneous loss of activity of all molybdoenzymes, fully or partially preventing the normal development of the affected organism. To prevent this, the different mechanisms involved in Mo homeostasis must be finely regulated. is a unicellular, photosynthetic, eukaryotic microalga that has produced fundamental advances in key steps of Mo homeostasis over the last 30 years, which have been extrapolated to higher organisms, both plants and animals. These advances include the identification of the first two molybdate transporters in eukaryotes (MOT1 and MOT2), the characterization of key genes in Moco biosynthesis, the identification of the first enzyme that protects and transfers Moco (MCP1), the first characterization of mARC in plants, and the discovery of the crucial role of the nitrate reductase-mARC complex in plant nitric oxide production. This review aims to provide a comprehensive summary of the progress achieved in using as a model organism in Mo homeostasis and to propose how this microalga can continue improving with the advancements in this field in the future.

摘要

钼(Mo)对于一小类但至关重要的称为钼酶的酶的活性至关重要。到目前为止,在真核生物中已发现了五种特定的钼酶:硝酸还原酶、亚硫酸盐氧化酶、黄嘌呤脱氢酶、醛氧化酶和mARC。为了具有生物活性,钼必须与蝶呤螯合,形成所谓的钼辅因子(Moco)。参与Moco生物合成的任何基因的缺陷或突变都会导致所有钼酶的活性同时丧失,完全或部分阻止受影响生物体的正常发育。为了防止这种情况,必须精细调节钼稳态中涉及的不同机制。莱茵衣藻是一种单细胞、光合真核微藻,在过去30年中,它在钼稳态的关键步骤上取得了根本性进展,这些进展已被推广到高等生物,包括植物和动物。这些进展包括真核生物中首批两种钼酸盐转运蛋白(MOT1和MOT2)的鉴定、Moco生物合成中关键基因的表征、首个保护和转移Moco的酶(MCP1)的鉴定、植物中mARC的首次表征以及硝酸还原酶-mARC复合物在植物一氧化氮产生中的关键作用的发现。本综述旨在全面总结在利用莱茵衣藻作为钼稳态模型生物方面取得的进展,并提出这种微藻在未来该领域取得进展的情况下如何继续改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a2/10385300/ff869da6a30b/microorganisms-11-01671-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验