Suppr超能文献

解析底物和抑制剂结合时颗粒酶 B 的催化机制的结构见解。

Structural insights into the catalytic mechanism of granzyme B upon substrate and inhibitor binding.

机构信息

Nantes Université, CNRS, CEISAM, UMR 6230, F-44000, Nantes, France.

CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France.

出版信息

J Mol Graph Model. 2022 Jul;114:108167. doi: 10.1016/j.jmgm.2022.108167. Epub 2022 Mar 22.

Abstract

Human granzyme B (hGzmB), which is present in various immune cells, has attracted much attention due to its role in various pathophysiological conditions. The hGzmB activity is triggered at a catalytic triad (His59, Asp103, Ser198), cleaving its specific substrates. To date, the drug design strategy against hGzmB mainly targets the catalytic triad, which causes the non-specificity problem of inhibitors due to the highly conserved active site in serine proteases. In the present work, microsecond classical molecular dynamics simulations are devoted to exploring the structural dynamics of the hGzmB catalytic cycle in the presence of Ac-IEPD-AMC, a known substrate (active hGzmB), and Ac-IEPD-CHO, a known inhibitor (inactive hGzmB). By comparing active and inactive forms of hGzmB in the six different stages of the hGzmB catalytic cycle, we revealed, for the very first time, an additional network of interactions involving Arg216, a residue located outside the conventional binding site. Upon activation, the His59∙∙∙Asp103 hydrogen bond is broken due to the formation of the Asp103∙∙∙Arg216 salt bridge, expanding the active site to facilitate the substrate-binding. On the contrary, the binding of inhibitor Ac-IEPD-CHO to hGzmB prevents the Arg216-mediated interactions within the catalytic triad, thus preventing hGzmB activity. In silico Arg216Ala mutation confirms the role of Arg216 in enzyme activity, as the substrate Ac-IEPD-AMC failed to bind to the mutated hGzmB. Importantly, as Arg216 is not conserved amongst the various granzymes, the current findings can be a major step to guide the design of hGzmB specific therapeutics.

摘要

人颗粒酶 B(hGzmB)存在于各种免疫细胞中,由于其在各种病理生理条件下的作用而备受关注。hGzmB 的活性在催化三联体(His59、Asp103、Ser198)处被触发,切割其特定的底物。迄今为止,针对 hGzmB 的药物设计策略主要针对催化三联体,由于丝氨酸蛋白酶的活性位点高度保守,这导致抑制剂的非特异性问题。在本工作中,我们进行了微秒经典分子动力学模拟,以探索存在已知底物(活性 hGzmB)Ac-IEPD-AMC 和已知抑制剂(无活性 hGzmB)Ac-IEPD-CHO 时 hGzmB 催化循环的结构动力学。通过比较 hGzmB 催化循环的六个不同阶段中的活性和无活性形式,我们首次揭示了涉及位于传统结合位点之外的残基 Arg216 的额外相互作用网络。在激活后,由于形成 Asp103∙∙∙Arg216 盐桥,His59∙∙∙Asp103 氢键被打破,扩大了活性位点以促进底物结合。相反,抑制剂 Ac-IEPD-CHO 与 hGzmB 的结合阻止了催化三联体中 Arg216 介导的相互作用,从而阻止了 hGzmB 的活性。计算机模拟的 Arg216Ala 突变证实了 Arg216 在酶活性中的作用,因为底物 Ac-IEPD-AMC 无法与突变的 hGzmB 结合。重要的是,由于 Arg216 在各种颗粒酶中不保守,因此当前的发现可以成为指导 hGzmB 特异性治疗药物设计的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验