Suppr超能文献

由四节点基序和相干1型前馈环组成的序列能够在任意输入信号范围内提供灵敏检测,从而在高阶感觉过程中解释韦伯定律,并进行对数计算。

The series of a four-node motif and coherent type-1 feed-forward loop can provide sensitive detection over arbitrary range of input signal, thereby explain Weber's law in higher-order sensory processes, and compute logarithm.

作者信息

Wadhwa Dinkar

机构信息

JK-140, Laxmi Nagar, 110092 Delhi, India.

出版信息

J Theor Biol. 2022 Jun 21;543:111107. doi: 10.1016/j.jtbi.2022.111107. Epub 2022 Mar 31.

Abstract

Weber's law states that the ratio of the smallest perceptual change in an input signal and the background signal is constant. The law is observed across the perception of weight, light intensity, and sound intensity and pitch. To explain Weber's law observed in steady-state responses, two models of perception have been proposed, namely the logarithmic and the linear model. This paper argues in favour of the linear model, which requires the sensory system to generate linear input-output relationship over several orders of magnitude. To this end, a four-node motif (FNM) is constructed from first principles whose series provides almost linear relationship between input signal and the output over arbitrary range of input signal. Mathematical analysis into the origin of this quasi-linear relationship shows that the series of coherent type-1 feed-forward loop (C1-FFL) is able to provide perfectly linear input-output relationship over arbitrary range of input signal. FNM also reproduces the neuronal data of numerosity detection study on the monkey. The series of FNM also provides a mechanism for sensitive detection over arbitrary range of input signal when the output has an upper limit. Further, the series of FNM provides a general basis for a class of bow-tie architecture where the number of receptors is much lower than the range of input signal and the "decoded output". Besides (quasi-)linear input-output relationship, another example of this class of bow-tie architecture that the series of FNM is able to produce is absorption spectra of cone opsins of humans. Further, the series of FNM and C1-FFL, both, can compute logarithm over arbitrary range of input signal.

摘要

韦伯定律指出,输入信号中最小可感知变化与背景信号的比值是恒定的。该定律在重量、光强度、声音强度和音高的感知中均有体现。为了解释在稳态响应中观察到的韦伯定律,人们提出了两种感知模型,即对数模型和线性模型。本文支持线性模型,该模型要求感觉系统在几个数量级上生成线性输入-输出关系。为此,从第一原理构建了一个四节点基序(FNM),其级数在输入信号的任意范围内提供输入信号与输出之间几乎线性的关系。对这种准线性关系起源的数学分析表明,相干1型前馈回路(C1-FFL)的级数能够在输入信号的任意范围内提供完美的线性输入-输出关系。FNM还重现了猴子数量检测研究的神经元数据。当输出有上限时,FNM的级数还为在输入信号的任意范围内进行灵敏检测提供了一种机制。此外,FNM的级数为一类蝴蝶结架构提供了一个通用基础,在这类架构中,受体的数量远低于输入信号和“解码输出”的范围。除了(准)线性输入-输出关系外,FNM级数能够产生的这类蝴蝶结架构的另一个例子是人类视锥蛋白的吸收光谱。此外,FNM和C1-FFL的级数都可以在输入信号的任意范围内计算对数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验