Suppr超能文献

利用自然语言处理技术探索新冠病毒知识。

Novel approach by natural language processing for COVID-19 knowledge discovery.

机构信息

Medical School, Nantong University, Nantong, China; Research Center for Intelligence Information Technology, Nantong University, Nantong, China.

Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.

出版信息

Biomed J. 2022 Jun;45(3):472-481. doi: 10.1016/j.bj.2022.03.011. Epub 2022 Apr 1.

Abstract

BACKGROUND

The impact of COVID-19 on public health has mandated an 'all hands on deck' scientific response. The current clinical study and basic research on COVID-19 are mainly based on existing publications or our knowledge of coronavirus. However, efficiently retrieval of accurate, relevant knowledge on COVID-19 can pose significant challenges for researchers.

METHODS

To improve quality in accessing important literature findings, we developed a novel natural language processing (NLP) method to automatically recognize the associations among potential targeted host organ systems, associated clinical manifestations, and pathways. We further validated these associations through clinician experts' evaluations and prioritize candidate drug targets through bioinformatics network analysis.

RESULTS

We found that the angiotensin-converting enzyme 2 (ACE2), a receptor that SARS-CoV-2 required for cell entry, is associated with cardiovascular and endocrine organ system and diseases. Furthermore, we found SARS-CoV-2 is associated with some important pathways such as IL-6, TNF-alpha, and IL-1 beta-induced dyslipidemia, which are related to inflammation, lipogenesis, and oxidative stress mechanisms, suggesting potential drug candidates.

CONCLUSION

We prioritized the list of therapeutic targets involved in antiviral and immune modulating drugs for experimental validation, rendering it valuable during public health crises marked by stresses on clinical and research capacity. Our automatic intelligence pipeline also contributes to other novel and emerging disease management and treatments in the future.

摘要

背景

COVID-19 对公共卫生的影响要求采取“全员参与”的科学应对措施。目前对 COVID-19 的临床研究和基础研究主要基于现有出版物或我们对冠状病毒的了解。然而,对于研究人员来说,有效地检索关于 COVID-19 的准确、相关知识可能会带来重大挑战。

方法

为了提高获取重要文献发现的质量,我们开发了一种新的自然语言处理(NLP)方法,以自动识别潜在靶向宿主器官系统、相关临床表现和途径之间的关联。我们进一步通过临床医生专家的评估验证了这些关联,并通过生物信息学网络分析优先考虑候选药物靶点。

结果

我们发现血管紧张素转换酶 2(ACE2),一种 SARS-CoV-2 进入细胞所需的受体,与心血管和内分泌器官系统和疾病有关。此外,我们发现 SARS-CoV-2 与一些重要途径有关,如 IL-6、TNF-alpha 和 IL-1 beta 诱导的血脂异常,这些途径与炎症、脂肪生成和氧化应激机制有关,提示可能有药物候选物。

结论

我们优先考虑了参与抗病毒和免疫调节药物的治疗靶点清单,以便在临床和研究能力受到压力的公共卫生危机期间进行实验验证。我们的自动智能管道也为未来其他新型和新兴疾病的管理和治疗做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8271/9422586/c714efb81a7f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验