Suppr超能文献

迈向可靠的心脏图像分割:通过自反思参考评估图像级和像素级分割质量。

Towards reliable cardiac image segmentation: Assessing image-level and pixel-level segmentation quality via self-reflective references.

作者信息

Li Kang, Yu Lequan, Heng Pheng-Ann

机构信息

The Department of Computer Science and Engineering, The Chinese University of Hong Kong, HKSAR, China.

The Department of Statistics and Actuarial Science, The University of Hong Kong, HKSAR, China.

出版信息

Med Image Anal. 2022 May;78:102426. doi: 10.1016/j.media.2022.102426. Epub 2022 Mar 24.

Abstract

Cardiac image segmentation is a fundamental step in cardiovascular disease diagnosis, where many deep learning models have achieved promising performance. However, when deploying these well-trained models for real clinical usage, the network will inevitably produce inferior results due to domain shifts, motion artifacts, etc. How to avoid the potential poor-quality segmentations involved in clinical decision making is crucial for reliable computer-aided cardiac disease diagnosis. To this end, we develop a quality control method to identify failure segmentations by measuring their qualities, and report them to physicians for professional opinions. In specific, we propose a reference-based framework to assess the image-level quality (i.e. per-class Dice) for overall evaluation and pixel-level quality (i.e. pixel-wise correct map) to locate mis-segmented regions. Following previous works, we create informative references first, and investigate their relative relationships (e.g. differences) to the inputs to expose segmentation failures. However, we generate and leverage the references in different ways. We instantiate the references by recovering input images from segmentations by a self-reflective reference generator. If the segmentation is of good quality, the reference (i.e. the reconstructed image) will be close to the input image, and the inconsistency between them would be a good indicator to deduce the qualities. To effectively explore these inconsistency, we employ a difference investigator equipped with semantic class-aware compactness constraint to force the correctly-segmented features more separable to the wrongly-segmented ones. The experiments on ACDC and MSCMR datasets demonstrated our method could effectively capture segmentation failures, and the results on low-quality (Dice∈[0,0.6)), medium-quality (Dice∈[0.6,0.8)) and high-quality (Dice∈[0.8,1.0)) segmentations showed satisfying robustness of our method.

摘要

心脏图像分割是心血管疾病诊断中的一个基本步骤,许多深度学习模型在这方面取得了不错的性能。然而,当将这些训练良好的模型应用于实际临床时,由于领域偏移、运动伪影等原因,网络不可避免地会产生较差的结果。如何避免临床决策中潜在的低质量分割对于可靠的计算机辅助心脏病诊断至关重要。为此,我们开发了一种质量控制方法,通过测量分割质量来识别失败的分割,并将其报告给医生以征求专业意见。具体来说,我们提出了一个基于参考的框架,用于评估图像级质量(即每类Dice系数)以进行整体评估,以及像素级质量(即像素级正确映射)以定位错误分割的区域。遵循先前的工作,我们首先创建信息丰富的参考,并研究它们与输入的相对关系(例如差异)以揭示分割失败。然而,我们以不同的方式生成和利用参考。我们通过一个自反射参考生成器从分割中恢复输入图像来实例化参考。如果分割质量良好,参考(即重建图像)将接近输入图像,它们之间的不一致将是推断质量的一个很好指标。为了有效地探索这些不一致性,我们采用了一个配备语义类感知紧凑性约束的差异调查器,以迫使正确分割的特征与错误分割的特征更易于分离。在ACDC和MSCMR数据集上的实验表明,我们的方法可以有效地捕捉分割失败,并且在低质量(Dice∈[0,0.6))、中等质量(Dice∈[0.6,0.8))和高质量(Dice∈[0.8,1.0))分割上的结果显示了我们方法令人满意的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验