文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于全卷积网络的主动轮廓模型自动肝脏分割

Automatic liver segmentation by integrating fully convolutional networks into active contour models.

机构信息

Department of Radiology, Columbia University Medical Center, New York, NY, 10032, USA.

出版信息

Med Phys. 2019 Oct;46(10):4455-4469. doi: 10.1002/mp.13735. Epub 2019 Aug 16.


DOI:10.1002/mp.13735
PMID:31356688
Abstract

PURPOSE: Automatic and accurate three-dimensional (3D) segmentation of liver with severe diseases from computed tomography (CT) images is a challenging task. Fully convolutional networks (FCNs) have emerged as powerful tools for automatic semantic segmentation, with multiple potential applications in medical imaging. However, the use of a large receptive field and multiple pooling layers in the network leads to poor localization around object boundaries. The network usually makes pixel-wise prediction independently, making it difficult to respect local label consistency and enforce the smoothness of the object boundary. METHODS: We have developed an automatic liver segmentation method based on a novel framework that integrates fully convolutional network predictions into active contour models (ACM). We use only a single network architecture to generate a pixel label map containing spatial regional information (foreground and background) as well as layered boundary information. We exploit the structured network outcome to define an external constraint force of active contour models. A unique property of the designed force is that both its strength and direction are adaptive to its position and relative distance to the object boundary. The resulting integrated active contour models have the advantages of incorporating both high-level and low-level image information simultaneously, while enforcing the smoothness of the contour. Because the external constraint force can push the evolving contour to the liver boundary and exists everywhere in the image domain, it allows us to place the initial contour far away from the liver boundary. It potentially allows us to control the evolution of the contour in order to preserve the topology of the liver. RESULTS: We have trained and evaluated our model on 73 liver CT scans from a clinic study. The integrated ACM model yields mean dice coefficients (DICE) 95.8 ± 1.4 (%). Without further fine-tuning the network weights for two independent datasets, it yields mean DICE 96.2 ± 0.9 (%) for the SLIVER07 training dataset, and mean DICE 94.3 ± 2.7 (%) for the LiTS training dataset. In comparison with FCN alone model, the integrated ACM model yields improvements in terms of surface distance and DICE values for almost all the cases. Furthermore, the initialization of the active contour can be very far away from the liver boundary. CONCLUSIONS: Experimental results for segmenting livers (with severe diseases on CT images resulting in shape and density abnormalities) have revealed that our proposed model improves segmentation results in comparison with FCN alone. Without further fine-tuning the network weights for two independent datasets, the model is capable of handling image variations from different datasets due to its inherent deformable nature. It is relatively easy to integrate more advanced (either existing or future) FCN architecture into our framework to further improve the segmentation performance.

摘要

目的:从 CT 图像中自动、准确地分割严重疾病的肝脏是一项具有挑战性的任务。全卷积网络(FCN)已成为自动语义分割的强大工具,在医学成像中有多种潜在应用。然而,网络中使用大的感受野和多个池化层会导致物体边界周围的定位不佳。该网络通常独立地进行像素级预测,因此很难尊重局部标签一致性并强制对象边界的平滑度。

方法:我们开发了一种基于新框架的自动肝脏分割方法,该框架将全卷积网络预测集成到主动轮廓模型(ACM)中。我们仅使用单个网络架构生成像素标签图,其中包含空间区域信息(前景和背景)以及分层边界信息。我们利用结构化网络结果来定义主动轮廓模型的外部约束力。设计力的一个独特特性是,其强度和方向都自适应于其位置和相对于物体边界的相对距离。由此产生的集成主动轮廓模型具有同时结合高级和低级图像信息的优点,同时强制轮廓的平滑度。由于外部约束力可以将演化轮廓推向肝脏边界,并且在图像域的每个位置都存在,因此我们可以将初始轮廓放置在远离肝脏边界的位置。它有可能允许我们控制轮廓的演化,以保持肝脏的拓扑结构。

结果:我们在一项临床研究中对 73 个肝脏 CT 扫描进行了训练和评估。集成的 ACM 模型产生的平均骰子系数(DICE)为 95.8±1.4(%)。在不进一步调整两个独立数据集的网络权重的情况下,它在 SLIVER07 训练数据集上的平均 DICE 为 96.2±0.9(%),在 LiTS 训练数据集上的平均 DICE 为 94.3±2.7(%)。与 FCN 单独模型相比,集成的 ACM 模型在几乎所有情况下都提高了表面距离和 DICE 值。此外,主动轮廓的初始化可以离肝脏边界非常远。

结论:对 CT 图像中肝脏(因形状和密度异常导致严重疾病)进行分割的实验结果表明,与 FCN 单独模型相比,我们提出的模型提高了分割结果。在不进一步调整两个独立数据集的网络权重的情况下,由于其固有的可变形性质,该模型能够处理来自不同数据集的图像变化。将更先进的(无论是现有还是未来的)FCN 架构集成到我们的框架中以进一步提高分割性能相对容易。

相似文献

[1]
Automatic liver segmentation by integrating fully convolutional networks into active contour models.

Med Phys. 2019-8-16

[2]
Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model.

Med Phys. 2018-11-28

[3]
Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks.

Int J Comput Assist Radiol Surg. 2019-4-30

[4]
An application of cascaded 3D fully convolutional networks for medical image segmentation.

Comput Med Imaging Graph. 2018-3-16

[5]
Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.

Med Phys. 2018-9-19

[6]
Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

Med Phys. 2017-10-23

[7]
Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.

Med Image Anal. 2018-2-1

[8]
Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.

Med Phys. 2019-5-6

[9]
Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis.

IEEE Trans Med Imaging. 2017-3

[10]
Toward reliable automatic liver and tumor segmentation using convolutional neural network based on 2.5D models.

Int J Comput Assist Radiol Surg. 2021-1

引用本文的文献

[1]
When liver disease diagnosis encounters deep learning: Analysis, challenges, and prospects.

ILIVER. 2023-3-4

[2]
Machine learning-based identification of contrast-enhancement phase of computed tomography scans.

PLoS One. 2024

[3]
Performance and clinical applicability of machine learning in liver computed tomography imaging: a systematic review.

Eur Radiol. 2023-10

[4]
Deep learning-based approach for the automatic segmentation of adult and pediatric temporal bone computed tomography images.

Quant Imaging Med Surg. 2023-3-1

[5]
nnU-Net Deep Learning Method for Segmenting Parenchyma and Determining Liver Volume From Computed Tomography Images.

Ann Surg Open. 2022-6

[6]
Practical utility of liver segmentation methods in clinical surgeries and interventions.

BMC Med Imaging. 2022-5-24

[7]
Liver segmentation in CT imaging with enhanced mask region-based convolutional neural networks.

Ann Transl Med. 2021-12

[8]
Three-Dimensional Liver Image Segmentation Using Generative Adversarial Networks Based on Feature Restoration.

Front Med (Lausanne). 2022-1-7

[9]
Automatic Liver Segmentation in CT Images with Enhanced GAN and Mask Region-Based CNN Architectures.

Biomed Res Int. 2021

[10]
Radiomics in hepatocellular carcinoma: A state-of-the-art review.

World J Gastrointest Oncol. 2021-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索