Suppr超能文献

基于超声医师眼动追踪的胎儿超声多模态持续学习

Multimodal Continual Learning with Sonographer Eye-Tracking in Fetal Ultrasound.

作者信息

Patra Arijit, Cai Yifan, Chatelain Pierre, Sharma Harshita, Drukker Lior, Papageorghiou Aris T, Noble J Alison

机构信息

University of Oxford, Oxford, Oxfordshire OX3 7DQ, UK.

出版信息

Simpl Med Ultrasound (2021). 2021 Sep 21;12967:14-24. doi: 10.1007/978-3-030-87583-1_2.

Abstract

Deep networks have been shown to achieve impressive accuracy for some medical image analysis tasks where large datasets and annotations are available. However, tasks involving learning over new sets of classes arriving over extended time is a different and difficult challenge due to the tendency of reduction in performance over old classes while adapting to new ones. Controlling such a 'forgetting' is vital for deployed algorithms to evolve with new arrivals of data incrementally. Usually, incremental learning approaches rely on expert knowledge in the form of manual annotations or active feedback. In this paper, we explore the role that other forms of expert knowledge might play in making deep networks in medical image analysis immune to forgetting over extended time. We introduce a novel framework for mitigation of this forgetting effect in deep networks considering the case of combining ultrasound video with point-of-gaze tracked for expert sonographers during model training. This is used along with a novel weighted distillation strategy to reduce the propagation of effects due to class imbalance.

摘要

深度网络已被证明在某些有大量数据集和注释的医学图像分析任务中能取得令人印象深刻的准确率。然而,由于在适应新类别时旧类别性能会下降,涉及对长时间内新出现的类别集进行学习的任务是一个不同且困难的挑战。控制这种“遗忘”对于已部署的算法随着新数据的不断到来而逐步发展至关重要。通常,增量学习方法依赖于以手动注释或主动反馈形式存在的专家知识。在本文中,我们探讨了其他形式的专家知识在使医学图像分析中的深度网络在长时间内免受遗忘影响方面可能发挥的作用。考虑到在模型训练期间将超声视频与专家超声医师的注视点跟踪相结合的情况,我们引入了一个减轻深度网络中这种遗忘效应的新颖框架。这与一种新颖的加权蒸馏策略一起使用,以减少由于类别不平衡导致的影响传播。

相似文献

2
Efficient Ultrasound Image Analysis Models with Sonographer Gaze Assisted Distillation.具有超声医师注视辅助蒸馏的高效超声图像分析模型
Med Image Comput Comput Assist Interv. 2019;22(Pt 4):394-402. doi: 10.1007/978-3-030-32251-9_43. Epub 2019 Oct 10.
10
Self-supervised Contrastive Video-Speech Representation Learning for Ultrasound.用于超声的自监督对比视频-语音表征学习
Med Image Comput Comput Assist Interv. 2020 Oct;12263:534-543. doi: 10.1007/978-3-030-59716-0_51.

引用本文的文献

1
The Use of Machine Learning in Eye Tracking Studies in Medical Imaging: A Review.机器学习在医学成像眼动研究中的应用:综述。
IEEE J Biomed Health Inform. 2024 Jun;28(6):3597-3612. doi: 10.1109/JBHI.2024.3371893. Epub 2024 Jun 6.

本文引用的文献

4
Efficient Ultrasound Image Analysis Models with Sonographer Gaze Assisted Distillation.具有超声医师注视辅助蒸馏的高效超声图像分析模型
Med Image Comput Comput Assist Interv. 2019;22(Pt 4):394-402. doi: 10.1007/978-3-030-32251-9_43. Epub 2019 Oct 10.
5
SonoEyeNet: Standardized Fetal Ultrasound Plane Detection Informed by Eye Tracking.SonoEyeNet:基于眼动追踪的标准化胎儿超声平面检测
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1475-1478. doi: 10.1109/ISBI.2018.8363851. Epub 2018 May 24.
8
Learning without Forgetting.学过不忘。
IEEE Trans Pattern Anal Mach Intell. 2018 Dec;40(12):2935-2947. doi: 10.1109/TPAMI.2017.2773081. Epub 2017 Nov 14.
9
Overcoming catastrophic forgetting in neural networks.克服神经网络中的灾难性遗忘。
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3521-3526. doi: 10.1073/pnas.1611835114. Epub 2017 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验