Suppr超能文献

用于边缘智能的动态QoS/QoE感知可靠服务组合框架。

Dynamic QoS/QoE-aware reliable service composition framework for edge intelligence.

作者信息

Hayyolalam Vahideh, Otoum Safa, Özkasap Öznur

机构信息

Department of Computer Engineering, Koç University, Istanbul, Turkey.

College of Technological Innovation (CTI), Zayed University, Abu Dhabi, United Arab Emirates.

出版信息

Cluster Comput. 2022;25(3):1695-1713. doi: 10.1007/s10586-022-03572-9. Epub 2022 Mar 26.

Abstract

Edge intelligence has become popular recently since it brings smartness and copes with some shortcomings of conventional technologies such as cloud computing, Internet of Things (IoT), and centralized AI adoptions. However, although utilizing edge intelligence contributes to providing smart systems such as automated driving systems, smart cities, and connected healthcare systems, it is not free from limitations. There exist various challenges in integrating AI and edge computing, one of which is addressed in this paper. Our main focus is to handle the adoption of AI methods on resource-constrained edge devices. In this regard, we introduce the concept of Edge devices as a Service (EdaaS) and propose a quality of service (QoS) and quality of experience (QoE)-aware dynamic and reliable framework for AI subtasks composition. The proposed framework is evaluated utilizing three well-known meta-heuristics in terms of various metrics for a connected healthcare application scenario. The experimental results confirm the applicability of the proposed framework. Moreover, the results reveal that black widow optimization (BWO) can handle the issue more efficiently compared to particle swarm optimization (PSO) and simulated annealing (SA). The overall efficiency of BWO over PSO is 95%, and BWO outperforms SA with 100% efficiency. It means that BWO prevails SA and PSO in all and 95% of the experiments, respectively.

摘要

边缘智能最近变得很流行,因为它带来了智能,并解决了传统技术(如云计算、物联网(IoT)和集中式人工智能应用)的一些缺点。然而,尽管利用边缘智能有助于提供诸如自动驾驶系统、智能城市和互联医疗系统等智能系统,但它也并非没有局限性。在将人工智能与边缘计算集成方面存在各种挑战,本文解决了其中之一。我们的主要重点是在资源受限的边缘设备上处理人工智能方法的采用。在这方面,我们引入了边缘设备即服务(EdaaS)的概念,并提出了一种用于人工智能子任务组合的、具有服务质量(QoS)和体验质量(QoE)意识的动态可靠框架。在所提出的框架中,针对互联医疗应用场景,利用三种著名的元启发式算法根据各种指标进行了评估。实验结果证实了所提出框架的适用性。此外,结果表明,与粒子群优化(PSO)和模拟退火(SA)相比,黑寡妇优化(BWO)能够更有效地处理该问题。BWO相对于PSO的总体效率为95%,BWO以100%的效率优于SA。这意味着在所有实验和95%的实验中,BWO分别优于SA和PSO。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21a7/8959554/5b1711be90e9/10586_2022_3572_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验