文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于在预防、检测和服务提供方法中抗击新冠疫情的计算机辅助方法。

Computer-aided methods for combating Covid-19 in prevention, detection, and service provision approaches.

作者信息

Rezazadeh Bahareh, Asghari Parvaneh, Rahmani Amir Masoud

机构信息

Computer Engineering Department, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

出版信息

Neural Comput Appl. 2023;35(20):14739-14778. doi: 10.1007/s00521-023-08612-y. Epub 2023 May 5.


DOI:10.1007/s00521-023-08612-y
PMID:37274420
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10162652/
Abstract

The infectious disease Covid-19 has been causing severe social, economic, and human suffering across the globe since 2019. The countries have utilized different strategies in the last few years to combat Covid-19 based on their capabilities, technological infrastructure, and investments. A massive epidemic like this cannot be controlled without an intelligent and automatic health care system. The first reaction to the disease outbreak was lockdown, and researchers focused more on developing methods to diagnose the disease and recognize its behavior. However, as the new lifestyle becomes more normalized, research has shifted to utilizing computer-aided methods to monitor, track, detect, and treat individuals and provide services to citizens. Thus, the Internet of things, based on fog-cloud computing, using artificial intelligence approaches such as machine learning, and deep learning are practical concepts. This article aims to survey computer-based approaches to combat Covid-19 based on prevention, detection, and service provision. Technically and statistically, this article analyzes current methods, categorizes them, presents a technical taxonomy, and explores future and open issues.

摘要

自2019年以来,传染病新冠病毒一直在全球范围内造成严重的社会、经济和人类苦难。在过去几年里,各国根据自身能力、技术基础设施和投资情况,采用了不同的策略来抗击新冠病毒。像这样大规模的疫情,如果没有智能和自动化的医疗保健系统,是无法得到控制的。对疾病爆发的第一反应是封锁,研究人员更多地专注于开发诊断疾病和识别其行为的方法。然而,随着新的生活方式变得更加常态化,研究已转向利用计算机辅助方法来监测、追踪、检测和治疗个人,并向公民提供服务。因此,基于雾计算和云计算、使用机器学习和深度学习等人工智能方法的物联网是切实可行的概念。本文旨在调研基于预防、检测和服务提供来抗击新冠病毒的计算机辅助方法。从技术和统计角度,本文分析了当前方法,对其进行分类,提出技术分类法,并探讨未来和开放性问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/dca0dad57101/521_2023_8612_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/865ac3a840c1/521_2023_8612_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/82d6c4fa5dfc/521_2023_8612_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/5f1874b272a6/521_2023_8612_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/e0a62d916228/521_2023_8612_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/b1446aa2eae9/521_2023_8612_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/b409f8d00350/521_2023_8612_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/d3246d984e8a/521_2023_8612_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/dca0dad57101/521_2023_8612_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/865ac3a840c1/521_2023_8612_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/82d6c4fa5dfc/521_2023_8612_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/5f1874b272a6/521_2023_8612_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/e0a62d916228/521_2023_8612_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/b1446aa2eae9/521_2023_8612_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/b409f8d00350/521_2023_8612_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/d3246d984e8a/521_2023_8612_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a8/10162652/dca0dad57101/521_2023_8612_Fig8_HTML.jpg

相似文献

[1]
Computer-aided methods for combating Covid-19 in prevention, detection, and service provision approaches.

Neural Comput Appl. 2023

[2]
STROVE: spatial data infrastructure enabled cloud-fog-edge computing framework for combating COVID-19 pandemic.

Innov Syst Softw Eng. 2022-6-2

[3]
Fog-cloud architecture-driven Internet of Medical Things framework for healthcare monitoring.

Med Biol Eng Comput. 2023-5

[4]
Current Technologies for Detection of COVID-19: Biosensors, Artificial Intelligence and Internet of Medical Things (IoMT): Review.

Sensors (Basel). 2022-12-30

[5]
Smart Containers Schedulers for Microservices Provision in Cloud-Fog-IoT Networks. Challenges and Opportunities.

Sensors (Basel). 2020-3-19

[6]
Detection of Malicious Cloud Bandwidth Consumption in Cloud Computing Using Machine Learning Techniques.

Comput Intell Neurosci. 2022

[7]
A Capillary Computing Architecture for Dynamic Internet of Things: Orchestration of Microservices from Edge Devices to Fog and Cloud Providers.

Sensors (Basel). 2018-9-4

[8]
The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things.

Comput Methods Programs Biomed. 2023-11

[9]
Internet of Things in Space: A Review of Opportunities and Challenges from Satellite-Aided Computing to Digitally-Enhanced Space Living.

Sensors (Basel). 2021-12-4

[10]
Artificial Intelligence Algorithm-Based Economic Denial of Sustainability Attack Detection Systems: Cloud Computing Environments.

Sensors (Basel). 2022-6-21

引用本文的文献

[1]
Multi-camera spatiotemporal deep learning framework for real-time abnormal behavior detection in dense urban environments.

Sci Rep. 2025-7-23

本文引用的文献

[1]
Anti-spoofing-enabled Contactless Attendance Monitoring System in the COVID-19 Pandemic.

Procedia Comput Sci. 2023

[2]
An intelligent health monitoring and diagnosis system based on the internet of things and fuzzy logic for cardiac arrhythmia COVID-19 patients.

Comput Biol Med. 2023-3

[3]
A robotic arm for safe and accurate control of biomedical equipment during COVID-19.

Health Technol (Berl). 2023

[4]
Digital technologies and collective intelligence for healthcare ecosystem: Optimizing Internet of Things adoption for pandemic management.

J Bus Res. 2021-7

[5]
The Role of Internet of Things to Control the Outbreak of COVID-19 Pandemic.

IEEE Internet Things J. 2021-4-1

[6]
Artificial intelligence-inspired comprehensive framework for Covid-19 outbreak control.

Artif Intell Med. 2022-5

[7]
Real-time data of COVID-19 detection with IoT sensor tracking using artificial neural network.

Comput Electr Eng. 2022-5

[8]
Dynamic QoS/QoE-aware reliable service composition framework for edge intelligence.

Cluster Comput. 2022

[9]
A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain.

Comput Biol Med. 2022-6

[10]
COVID-19 Pandemic: Identifying Key Issues Using Social Media and Natural Language Processing.

J Healthc Inform Res. 2022-2-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索