Suppr超能文献

tPRiors:一种用于先验推断和获得真实疾病流行率后验分布的工具。

|tPRiors |: a tool for prior elicitation and obtaining posterior distributions of true disease prevalence.

机构信息

Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public and One Health, University of Thessaly, Karditsa, Greece.

出版信息

BMC Med Res Methodol. 2022 Apr 3;22(1):91. doi: 10.1186/s12874-022-01557-1.

Abstract

BACKGROUND

Tests have false positive or false negative results, which, if not properly accounted for, may provide misleading apparent prevalence estimates based on the observed rate of positive tests and not the true disease prevalence estimates. Methods to estimate the true prevalence of disease, adjusting for the sensitivity and the specificity of the diagnostic tests are available and can be applied, though, such procedures can be cumbersome to researchers with or without a solid statistical background. This manuscript introduces a web-based application that integrates statistical methods for Bayesian inference of true disease prevalence based on prior elicitation for the accuracy of the diagnostic tests. This tool allows practitioners to simultaneously analyse and visualize results while using interactive sliders and output prior/posterior plots.

METHODS - IMPLEMENTATION: Three methods for prevalence prior elicitation and four core families of Bayesian methods have been combined and incorporated in this web tool. |tPRiors| user interface has been developed with R and Shiny and may be freely accessed on-line.

RESULTS

|tPRiors| allows researchers to use preloaded data or upload their own datasets and perform analysis on either single or multiple population groups clusters, allowing, if needed, for excess zero prevalence. The final report is exported in raw parts either as.rdata or.png files and can be further analysed. We utilize a real multiple-population and a toy single-population dataset to demonstrate the robustness and capabilities of |tPRiors|.

CONCLUSIONS

We expect |tPRiors| to be helpful for researchers interested in true disease prevalence estimation and who are keen on accounting for prior information. |tPRiors| acts both as a statistical tool and a simplified step-by-step statistical framework that facilitates the use of complex Bayesian methods. The application of |tPRiors| is expected to aid standardization of practices in the field of Bayesian modelling on subject and multiple group-based true prevalence estimation.

摘要

背景

检测结果可能存在假阳性或假阴性,如果不加以适当考虑,可能会根据阳性检测的观察发生率提供误导性的表观流行率估计,而不是真实的疾病流行率估计。用于估计疾病真实流行率的方法,调整诊断测试的敏感性和特异性是可用的,并且可以应用,尽管如此,这些程序对于有或没有坚实统计背景的研究人员来说可能都很繁琐。本文介绍了一种基于诊断测试准确性先验信息的贝叶斯真实疾病流行率推断的基于网络的应用程序,该应用程序集成了统计方法。该工具允许从业者在使用交互式滑块和输出先验/后验图的同时分析和可视化结果。

方法 - 实现:已经结合了三种流行率先验启发式方法和四种核心贝叶斯方法家族,并将其纳入这个网络工具中。|tPRiors|用户界面是使用 R 和 Shiny 开发的,可以在线免费访问。

结果

|tPRiors|允许研究人员使用预加载的数据或上传自己的数据集,并对单个或多个群体集群进行分析,允许在需要时存在过多的零流行率。最终报告以原始部分以.rdata 或.png 文件导出,并可以进一步分析。我们利用一个真实的多群体和一个玩具的单群体数据集来演示 |tPRiors|的稳健性和功能。

结论

我们希望 |tPRiors|能对有兴趣进行真实疾病流行率估计的研究人员有帮助,并且热衷于考虑先验信息。|tPRiors|既是一种统计工具,也是一个简化的分步统计框架,便于使用复杂的贝叶斯方法。预计 |tPRiors|的应用将有助于在基于主题和多组的真实流行率估计的贝叶斯建模领域标准化实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb20/8978344/15309f6f7cc3/12874_2022_1557_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验