Suppr超能文献

一种基于过程的硬颈蒜生物量和产量估算综合模型()。

An Integrative Process-Based Model for Biomass and Yield Estimation of Hardneck Garlic ().

作者信息

Yun Kyungdahm, Shin Minji, Moon Kyung Hwan, Kim Soo-Hyung

机构信息

School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States.

Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeju, South Korea.

出版信息

Front Plant Sci. 2022 Mar 15;13:783810. doi: 10.3389/fpls.2022.783810. eCollection 2022.

Abstract

We introduce an integrative process-based crop model for garlic (). Building on our previous model that simulated key phenological, morphological, and physiological features of a garlic plant, the new garlic model provides comprehensive and integrative estimations of biomass accumulation and yield formation under diverse environmental conditions. This model also showcases an application of Cropbox to develop a comprehensive crop model. Cropbox is a crop modeling framework featuring declarative modeling language and a unified simulation interface for building and improving crop models. Using Cropbox, we first evaluated the model performance against three datasets with an emphasis on biomass and yield measured under different environmental conditions and growing seasons. We then applied the model to simulate optimal planting dates under future climate conditions for assessing climate adaptation strategies between two contrasting locations in South Korea: the current growing region (Gosan, Jeju) and an unfavorable cold winter region (Chuncheon, Gangwon). The model simulated the growth and development of a southern-type cultivar (Namdo, ND) reasonably well. Under Representative Concentration Pathway (RCP) scenarios, an overall delay in optimal planting date from a week to a month, and a slight increase in potential yield were expected in Gosan. Expansion of growing region to northern area including Chuncheon was expected due to mild winter temperatures in the future and may allow ND cultivar production in more regions. The predicted optimal planting date in the new region was similar to the current growing region that favors early fall planting. Our new integrative garlic model provides mechanistic, process-based crop responses to environmental cues and can be useful for assessing climate impacts and identifying crop specific climate adaptation strategies for the future.

摘要

我们介绍了一种基于过程的大蒜综合作物模型()。基于我们之前模拟大蒜植株关键物候、形态和生理特征的模型,新的大蒜模型能够在不同环境条件下对生物量积累和产量形成进行全面综合的估算。该模型还展示了利用Cropbox开发综合作物模型的应用。Cropbox是一个作物建模框架,具有声明式建模语言和用于构建及改进作物模型的统一模拟接口。我们首先使用Cropbox,针对三个数据集评估了模型性能,重点关注不同环境条件和生长季节下测量的生物量和产量。然后,我们应用该模型模拟未来气候条件下的最佳种植日期,以评估韩国两个对比地点(当前种植区(济州岛高山市)和冬季寒冷不利的地区(江原道春川市))之间的气候适应策略。该模型对南方型品种(南道,ND)的生长发育模拟得相当不错。在代表性浓度路径(RCP)情景下,预计高山市的最佳种植日期总体延迟一周至一个月,潜在产量略有增加。由于未来冬季气温温和,预计种植区将扩展到包括春川市在内的北部地区,这可能使更多地区能够种植ND品种。新地区预测的最佳种植日期与当前有利于秋初种植的种植区相似。我们新的综合大蒜模型提供了基于机制和过程的作物对环境线索的响应,可用于评估气候影响并确定未来特定作物的气候适应策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e97/8967357/ec993807309a/fpls-13-783810-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验