Gowdy Mark, Pieri Philippe, Suter Bruno, Marguerit Elisa, Destrac-Irvine Agnès, Gambetta Gregory, van Leeuwen Cornelis
EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Bordeaux, France.
Front Plant Sci. 2022 Mar 18;13:839378. doi: 10.3389/fpls.2022.839378. eCollection 2022.
In response to changes in their environments, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both the soil and plant. To help with future characterization of this dynamic response, a simplified method is presented for determining bulk stomatal conductance based on the crop canopy energy flux model by Shuttleworth and Wallace using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. The methodology presented respects the energy flux dynamics of vineyards with open canopies, while avoiding problematic measurements of soil heat flux and boundary layer conductance needed by other methods, which might otherwise interfere with ongoing vineyard management practices. Based on this method and measurements taken on several vines in a non-irrigated vineyard in Bordeaux France, bulk stomatal conductance was estimated on 15-minute intervals from July to mid-September 2020 producing values similar to those presented for vineyards in the literature. Time-series plots of this conductance show significant diurnal variation and seasonal decreases in conductance associated with increased vine water stress as measured by predawn leaf water potential. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, emphasizing the usefulness of characterizing its dynamic response for the purpose of estimating vine canopy transpiration in water use models.
为响应环境变化,葡萄藤利用各种生理机制调节蒸腾作用,这些机制会改变水在土壤-植物-大气连续体中的传导率。以冠层尺度表示,它会随着水汽压差和净辐射的变化而昼夜变化,并在整个季节随着土壤水分亏缺以及土壤和植物的水力传导率的变化而变化。为了有助于未来对这种动态响应进行表征,本文提出了一种简化方法,用于根据Shuttleworth和Wallace的作物冠层能量通量模型来确定整体气孔导度,该方法使用单个葡萄藤液流、葡萄藤冠层内的温度和湿度测量值,以及葡萄藤冠层吸收的净辐射估计值。所提出的方法尊重了具有开放冠层的葡萄园的能量通量动态,同时避免了其他方法所需的土壤热通量和边界层导度的有问题的测量,否则这些测量可能会干扰正在进行的葡萄园管理实践。基于此方法以及在法国波尔多一个非灌溉葡萄园的几株葡萄藤上进行的测量,在2020年7月至9月中旬期间,每隔15分钟估计一次整体气孔导度,得到的值与文献中报道的葡萄园的值相似。该导度的时间序列图显示出显著的昼夜变化以及与黎明前叶水势测量的葡萄藤水分胁迫增加相关的导度季节性下降。使用非参数回归的全局敏感性分析发现,蒸腾通量和水汽压差是计算整体气孔导度最重要的输入变量,而吸收的净辐射和整体边界层导度的重要性要小得多。相反,在计算葡萄藤蒸腾作用时,整体气孔导度是最重要的输入之一,这强调了表征其动态响应对于在用水模型中估计葡萄藤冠层蒸腾作用的有用性。