Nap Rikkert J, Qiao Baofu, Palmer Liam C, Stupp Samuel I, Olvera de la Cruz Monica, Szleifer Igal
Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.
Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, United States.
Front Chem. 2022 Mar 16;10:852164. doi: 10.3389/fchem.2022.852164. eCollection 2022.
Peptide amphiphiles are a class of molecules that can self-assemble into a variety of supramolecular structures, including high-aspect-ratio nanofibers. It is challenging to model and predict the charges in these supramolecular nanofibers because the ionization state of the peptides are not fixed but liable to change due to the acid-base equilibrium that is coupled to the structural organization of the peptide amphiphile molecules. Here, we have developed a theoretical model to describe and predict the amount of charge found on self-assembled peptide amphiphiles as a function of pH and ion concentration. In particular, we computed the amount of charge of peptide amphiphiles nanofibers with the sequence - . In our theoretical formulation, we consider charge regulation of the carboxylic acid groups, which involves the acid-base chemical equilibrium of the glutamic acid residues and the possibility of ion condensation. The charge regulation is coupled with the local dielectric environment by allowing for a varying dielectric constant that also includes a position-dependent electrostatic solvation energy for the charged species. We find that the charges on the glutamic acid residues of the peptide amphiphile nanofiber are much lower than the same functional group in aqueous solution. There is a strong coupling between the charging via the acid-base equilibrium and the local dielectric environment. Our model predicts a much lower degree of deprotonation for a position-dependent relative dielectric constant compared to a constant dielectric background. Furthermore, the shape and size of the electrostatic potential as well as the counterion distribution are quantitatively and qualitatively different. These results indicate that an accurate model of peptide amphiphile self-assembly must take into account charge regulation of acidic groups through acid-base equilibria and ion condensation, as well as coupling to the local dielectric environment.
肽两亲分子是一类能够自组装成多种超分子结构的分子,包括高纵横比的纳米纤维。对这些超分子纳米纤维中的电荷进行建模和预测具有挑战性,因为肽的电离状态不是固定的,而是容易因与肽两亲分子的结构组织相关联的酸碱平衡而发生变化。在此,我们开发了一种理论模型,以描述和预测自组装肽两亲分子上的电荷量随pH值和离子浓度的变化。特别是,我们计算了序列为 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 的肽两亲分子纳米纤维的电荷量。在我们的理论公式中,我们考虑了羧酸基团的电荷调节,这涉及谷氨酸残基的酸碱化学平衡以及离子凝聚的可能性。电荷调节通过允许变化介电常数与局部介电环境耦合,该介电常数还包括带电物种的位置依赖性静电溶剂化能。我们发现肽两亲分子纳米纤维中谷氨酸残基上的电荷比水溶液中相同官能团的电荷低得多。通过酸碱平衡的充电与局部介电环境之间存在强耦合。与恒定介电背景相比,我们的模型预测对于位置依赖性相对介电常数,去质子化程度要低得多。此外,静电势的形状和大小以及抗衡离子分布在定量和定性上都有所不同。这些结果表明,肽两亲分子自组装的准确模型必须考虑通过酸碱平衡和离子凝聚对酸性基团的电荷调节,以及与局部介电环境的耦合。