Suppr超能文献

生物能量进化解释了出生时低肾单位数的普遍存在:CKD 的风险因素。

Bioenergetic Evolution Explains Prevalence of Low Nephron Number at Birth: Risk Factor for CKD.

机构信息

Department of Pediatrics, University of Virginia, Charlottesville, Virginia.

出版信息

Kidney360. 2020 Jul 7;1(8):863-879. doi: 10.34067/KID.0002012020. eCollection 2020 Aug 27.

Abstract

There is greater than tenfold variation in nephron number of the human kidney at birth. Although low nephron number is a recognized risk factor for CKD, its determinants are poorly understood. Evolutionary medicine represents a new discipline that seeks evolutionary explanations for disease, broadening perspectives on research and public health initiatives. Evolution of the kidney, an organ rich in mitochondria, has been driven by natural selection for reproductive fitness constrained by energy availability. Over the past 2 million years, rapid growth of an energy-demanding brain in enabled hominid adaptation to environmental extremes through selection for mutations in mitochondrial and nuclear DNA epigenetically regulated by allocation of energy to developing organs. Maternal undernutrition or hypoxia results in intrauterine growth restriction or preterm birth, resulting in low birth weight and low nephron number. Regulated through placental transfer, environmental oxygen and nutrients signal nephron progenitor cells to reprogram metabolism from glycolysis to oxidative phosphorylation. These processes are modulated by counterbalancing anabolic and catabolic metabolic pathways that evolved from prokaryote homologs and by hypoxia-driven and autophagy pathways that evolved in eukaryotes. Regulation of nephron differentiation by histone modifications and DNA methyltransferases provide epigenetic control of nephron number in response to energy available to the fetus. Developmental plasticity of nephrogenesis represents an evolved life history strategy that prioritizes energy to early brain growth with adequate kidney function through reproductive years, the trade-off being increasing prevalence of CKD delayed until later adulthood. The research implications of this evolutionary analysis are to identify regulatory pathways of energy allocation directing nephrogenesis while accounting for the different life history strategies of animal models such as the mouse. The clinical implications are to optimize nutrition and minimize hypoxic/toxic stressors in childbearing women and children in early postnatal development.

摘要

人类出生时的肾单位数量存在十倍以上的差异。尽管低肾单位数是 CKD 的一个公认危险因素,但它的决定因素仍不清楚。进化医学代表了一个新的学科,它寻求用进化来解释疾病,拓宽了对研究和公共卫生计划的看法。富含线粒体的肾脏的进化是由生殖适应性的自然选择驱动的,这种适应性受到能量可用性的限制。在过去的 200 万年里,大脑作为一个能量密集型器官在灵长类动物中快速增长,通过选择线粒体和核 DNA 中的突变,使灵长类动物适应环境极端变化,这些突变受能量分配到发育器官的影响而受到表观遗传调控。母体营养不良或缺氧会导致宫内生长受限或早产,从而导致出生体重低和肾单位数量少。通过胎盘转移调节,环境氧气和营养物质信号向肾祖细胞发出信号,将代谢从糖酵解重新编程为氧化磷酸化。这些过程受到来自原核生物同源物的平衡合成代谢和分解代谢代谢途径以及真核生物中缺氧驱动和自噬途径的调节。组蛋白修饰和 DNA 甲基转移酶对肾单位分化的调节提供了对胎儿可用能量的反应的肾单位数量的表观遗传控制。肾发生的发育可塑性代表了一种进化的生活史策略,该策略优先为早期大脑生长提供能量,同时在生殖期内保持充足的肾功能,其权衡是增加 CKD 的患病率,直到成年后期才出现。这种进化分析的研究意义在于确定指导肾发生的能量分配调节途径,同时考虑到动物模型(如小鼠)不同的生活史策略。其临床意义在于优化营养,减少育龄妇女和新生儿发育后期儿童的缺氧/毒性应激源。

相似文献

1
Bioenergetic Evolution Explains Prevalence of Low Nephron Number at Birth: Risk Factor for CKD.
Kidney360. 2020 Jul 7;1(8):863-879. doi: 10.34067/KID.0002012020. eCollection 2020 Aug 27.
2
Bioenergetics: the evolutionary basis of progressive kidney disease.
Physiol Rev. 2023 Oct 1;103(4):2451-2506. doi: 10.1152/physrev.00029.2022. Epub 2023 Mar 30.
3
Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations.
Am J Physiol Renal Physiol. 2023 Nov 1;325(5):F595-F617. doi: 10.1152/ajprenal.00134.2023. Epub 2023 Sep 7.
4
The impact of intrauterine growth restriction and prematurity on nephron endowment.
Nat Rev Nephrol. 2023 Apr;19(4):218-228. doi: 10.1038/s41581-022-00668-8. Epub 2023 Jan 16.
6
Clinical consequences of developmental programming of low nephron number.
Anat Rec (Hoboken). 2020 Oct;303(10):2613-2631. doi: 10.1002/ar.24270. Epub 2019 Oct 6.
7
Regulation of nephron progenitor cell lifespan and nephron endowment.
Nat Rev Nephrol. 2022 Nov;18(11):683-695. doi: 10.1038/s41581-022-00620-w. Epub 2022 Sep 14.
8
Birth Weight and Susceptibility to Chronic Kidney Disease.
Saudi J Kidney Dis Transpl. 2020 Jul-Aug;31(4):717-726. doi: 10.4103/1319-2442.292305.
9
Short-term gestation, long-term risk: prematurity and chronic kidney disease.
Pediatrics. 2013 Jun;131(6):1168-79. doi: 10.1542/peds.2013-0009. Epub 2013 May 13.
10
Evolutionary Nephrology.
Kidney Int Rep. 2017 May;2(3):302-317. doi: 10.1016/j.ekir.2017.01.012. Epub 2017 Jan 31.

引用本文的文献

1
Evolutionary medicine of emunctory functions of the kidney: an empirical review.
Evol Med Public Health. 2025 Aug 5;13(1):229-247. doi: 10.1093/emph/eoaf019. eCollection 2025.
2
Kidney complications in children with bronchopulmonary dysplasia.
Pediatr Res. 2024 Oct 24. doi: 10.1038/s41390-024-03638-x.
3
Kidney Health Monitoring in Neonatal Intensive Care Unit Graduates: A Modified Delphi Consensus Statement.
JAMA Netw Open. 2024 Sep 3;7(9):e2435043. doi: 10.1001/jamanetworkopen.2024.35043.
4
Sirtuins in kidney health and disease.
Nat Rev Nephrol. 2024 May;20(5):313-329. doi: 10.1038/s41581-024-00806-4. Epub 2024 Feb 6.
5
Adults are just big kids: pediatric considerations for adult critical care nephrology.
Curr Opin Crit Care. 2023 Dec 1;29(6):580-586. doi: 10.1097/MCC.0000000000001100. Epub 2023 Sep 26.
6
Advances in pediatric acute kidney injury pathobiology: a report from the 26th Acute Disease Quality Initiative (ADQI) conference.
Pediatr Nephrol. 2024 Mar;39(3):941-953. doi: 10.1007/s00467-023-06154-y. Epub 2023 Oct 4.
7
CAKUT: A Pediatric and Evolutionary Perspective on the Leading Cause of CKD in Childhood.
Pediatr Rep. 2023 Feb 10;15(1):143-153. doi: 10.3390/pediatric15010012.
8
The impact of intrauterine growth restriction and prematurity on nephron endowment.
Nat Rev Nephrol. 2023 Apr;19(4):218-228. doi: 10.1038/s41581-022-00668-8. Epub 2023 Jan 16.
10
Critical windows of perinatal particulate matter (PM) exposure and preadolescent kidney function.
Environ Res. 2022 Mar;204(Pt B):112062. doi: 10.1016/j.envres.2021.112062. Epub 2021 Sep 16.

本文引用的文献

1
A Primer on Congenital Anomalies of the Kidneys and Urinary Tracts (CAKUT).
Clin J Am Soc Nephrol. 2020 May 7;15(5):723-731. doi: 10.2215/CJN.12581019. Epub 2020 Mar 18.
3
The Maternal Nutritional Buffering Model: an evolutionary framework for pregnancy nutritional intervention.
Evol Med Public Health. 2020 Jan 21;2020(1):14-27. doi: 10.1093/emph/eoz037. eCollection 2020.
4
New imaging tools to measure nephron number : opportunities for developmental nephrology.
J Dev Orig Health Dis. 2021 Apr;12(2):179-183. doi: 10.1017/S204017442000001X. Epub 2020 Jan 27.
5
Clinical consequences of developmental programming of low nephron number.
Anat Rec (Hoboken). 2020 Oct;303(10):2613-2631. doi: 10.1002/ar.24270. Epub 2019 Oct 6.
6
Kidney organoids: accurate models or fortunate accidents.
Genes Dev. 2019 Oct 1;33(19-20):1319-1345. doi: 10.1101/gad.329573.119.
7
Mitochondrial DNA: Epigenetics and environment.
Environ Mol Mutagen. 2019 Oct;60(8):668-682. doi: 10.1002/em.22319. Epub 2019 Aug 6.
8
Cooperation and conflict in human pregnancy.
Curr Biol. 2019 Jun 3;29(11):R455-R458. doi: 10.1016/j.cub.2019.04.040.
9
Von Hippel-Lindau Acts as a Metabolic Switch Controlling Nephron Progenitor Differentiation.
J Am Soc Nephrol. 2019 Jul;30(7):1192-1205. doi: 10.1681/ASN.2018111170. Epub 2019 May 29.
10
An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna.
Cell Metab. 2019 Jul 2;30(1):190-200.e6. doi: 10.1016/j.cmet.2019.04.013. Epub 2019 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验