Department of Pediatrics, University of Virginia, Charlottesville, Virginia.
Kidney360. 2020 Jul 7;1(8):863-879. doi: 10.34067/KID.0002012020. eCollection 2020 Aug 27.
There is greater than tenfold variation in nephron number of the human kidney at birth. Although low nephron number is a recognized risk factor for CKD, its determinants are poorly understood. Evolutionary medicine represents a new discipline that seeks evolutionary explanations for disease, broadening perspectives on research and public health initiatives. Evolution of the kidney, an organ rich in mitochondria, has been driven by natural selection for reproductive fitness constrained by energy availability. Over the past 2 million years, rapid growth of an energy-demanding brain in enabled hominid adaptation to environmental extremes through selection for mutations in mitochondrial and nuclear DNA epigenetically regulated by allocation of energy to developing organs. Maternal undernutrition or hypoxia results in intrauterine growth restriction or preterm birth, resulting in low birth weight and low nephron number. Regulated through placental transfer, environmental oxygen and nutrients signal nephron progenitor cells to reprogram metabolism from glycolysis to oxidative phosphorylation. These processes are modulated by counterbalancing anabolic and catabolic metabolic pathways that evolved from prokaryote homologs and by hypoxia-driven and autophagy pathways that evolved in eukaryotes. Regulation of nephron differentiation by histone modifications and DNA methyltransferases provide epigenetic control of nephron number in response to energy available to the fetus. Developmental plasticity of nephrogenesis represents an evolved life history strategy that prioritizes energy to early brain growth with adequate kidney function through reproductive years, the trade-off being increasing prevalence of CKD delayed until later adulthood. The research implications of this evolutionary analysis are to identify regulatory pathways of energy allocation directing nephrogenesis while accounting for the different life history strategies of animal models such as the mouse. The clinical implications are to optimize nutrition and minimize hypoxic/toxic stressors in childbearing women and children in early postnatal development.
人类出生时的肾单位数量存在十倍以上的差异。尽管低肾单位数是 CKD 的一个公认危险因素,但它的决定因素仍不清楚。进化医学代表了一个新的学科,它寻求用进化来解释疾病,拓宽了对研究和公共卫生计划的看法。富含线粒体的肾脏的进化是由生殖适应性的自然选择驱动的,这种适应性受到能量可用性的限制。在过去的 200 万年里,大脑作为一个能量密集型器官在灵长类动物中快速增长,通过选择线粒体和核 DNA 中的突变,使灵长类动物适应环境极端变化,这些突变受能量分配到发育器官的影响而受到表观遗传调控。母体营养不良或缺氧会导致宫内生长受限或早产,从而导致出生体重低和肾单位数量少。通过胎盘转移调节,环境氧气和营养物质信号向肾祖细胞发出信号,将代谢从糖酵解重新编程为氧化磷酸化。这些过程受到来自原核生物同源物的平衡合成代谢和分解代谢代谢途径以及真核生物中缺氧驱动和自噬途径的调节。组蛋白修饰和 DNA 甲基转移酶对肾单位分化的调节提供了对胎儿可用能量的反应的肾单位数量的表观遗传控制。肾发生的发育可塑性代表了一种进化的生活史策略,该策略优先为早期大脑生长提供能量,同时在生殖期内保持充足的肾功能,其权衡是增加 CKD 的患病率,直到成年后期才出现。这种进化分析的研究意义在于确定指导肾发生的能量分配调节途径,同时考虑到动物模型(如小鼠)不同的生活史策略。其临床意义在于优化营养,减少育龄妇女和新生儿发育后期儿童的缺氧/毒性应激源。