Earley Daniel F, Guillou Amaury, Klingler Simon, Fay Rachael, Gut Melanie, d'Orchymont Faustine, Behmaneshfar Shamisa, Reichert Linus, Holland Jason P
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland.
JACS Au. 2022 Feb 8;2(3):646-664. doi: 10.1021/jacsau.1c00530. eCollection 2022 Mar 28.
The creation of discrete, covalent bonds between a protein and a functional molecule like a drug, fluorophore, or radiolabeled complex is essential for making state-of-the-art tools that find applications in basic science and clinical medicine. Photochemistry offers a unique set of reactive groups that hold potential for the synthesis of protein conjugates. Previous studies have demonstrated that photoactivatable desferrioxamine B (DFO) derivatives featuring a para-substituted aryl azide (ArN) can be used to produce viable zirconium-89-radiolabeled monoclonal antibodies (Zr-mAbs) for applications in noninvasive diagnostic positron emission tomography (PET) imaging of cancers. Here, we report on the synthesis, Zr-radiochemistry, and light-triggered photoradiosynthesis of Zr-labeled human serum albumin (HSA) using a series of 14 different photoactivatable DFO derivatives. The photoactive groups explore a range of substituted, and isomeric ArN reagents, as well as derivatives of benzophenone, a para-substituted trifluoromethyl phenyl diazirine, and a tetrazole species. For the compounds studied, efficient photochemical activation occurs inside the UVA-to-visible region of the electromagnetic spectrum (∼365-450 nm) and the photochemical reactions with HSA in water were complete within 15 min under ambient conditions. Under standardized experimental conditions, photoradiosynthesis with compounds - produced the corresponding ZrDFO-PEG-HSA conjugates with decay-corrected isolated radiochemical yields between 18.1 ± 1.8% and 62.3 ± 3.6%. Extensive density functional theory (DFT) calculations were used to explore the reaction mechanisms and chemoselectivity of the light-induced bimolecular conjugation of compounds - to protein. The photoactivatable DFO-derivatives operate by at least five distinct mechanisms, each producing a different type of bioconjugate bond. Overall, the experimental and computational work presented here confirms that photochemistry is a viable option for making diverse, functionalized protein conjugates.
在蛋白质与药物、荧光团或放射性标记复合物等功能分子之间形成离散的共价键,对于制造在基础科学和临床医学中具有应用价值的先进工具至关重要。光化学提供了一组独特的反应基团,具有合成蛋白质缀合物的潜力。先前的研究表明,具有对取代芳基叠氮化物(ArN)的光可活化去铁胺B(DFO)衍生物可用于生产用于癌症无创诊断正电子发射断层扫描(PET)成像的可行的锆 - 89放射性标记单克隆抗体(Zr - mAbs)。在此,我们报告了使用一系列14种不同的光可活化DFO衍生物合成Zr标记的人血清白蛋白(HSA)、Zr放射化学及光触发光放射合成。光活性基团探索了一系列取代的和异构的ArN试剂,以及二苯甲酮衍生物、对取代三氟甲基苯基重氮甲烷和四唑类化合物。对于所研究的化合物,在电磁光谱的UVA到可见光区域(约365 - 450 nm)内发生有效的光化学活化,并且在环境条件下,水中与HSA的光化学反应在15分钟内完成。在标准化实验条件下,用化合物进行光放射合成产生了相应的ZrDFO - PEG - HSA缀合物,经衰变校正的分离放射化学产率在18.1±1.8%至62.3±3.6%之间。广泛的密度泛函理论(DFT)计算用于探索化合物与蛋白质光诱导双分子共轭的反应机理和化学选择性。光可活化DFO衍生物通过至少五种不同的机制起作用,每种机制产生不同类型的生物共轭键。总体而言,此处呈现的实验和计算工作证实光化学是制备多样的、功能化蛋白质缀合物的可行选择。