Suppr超能文献

离子跳跃:提高无机固体电解质离子电导率策略的设计原则

Ion Hopping: Design Principles for Strategies to Improve Ionic Conductivity for Inorganic Solid Electrolytes.

作者信息

Wang Caiyun, Xu Ben Bin, Zhang Xuan, Sun Wenping, Chen Jian, Pan Hongge, Yan Mi, Jiang Yinzhu

机构信息

School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China.

Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.

出版信息

Small. 2022 Oct;18(43):e2107064. doi: 10.1002/smll.202107064. Epub 2022 Apr 3.

Abstract

Solid electrolytes are considered as an ideal substitution of liquid electrolytes, avoiding the potential hazards of volatilization, flammability, and explosion for liquid electrolyte-based rechargeable batteries. However, there are significant performance gaps to be bridged between solid electrolytes and liquid electrolytes; one with a particular importance is the ionic conductivity which is highly dependent on the material types and structures. In this review, the general physical image of ion hopping in the crystalline structure is revisited, by highlighting two main kernels that impact ion migration: ion hopping pathways and skeletons interaction. The universal strategies to effectively improve ionic conductivity of inorganic solid electrolytes are then systematically summarized: constructing rapid diffusion pathways for mobile ions; and reducing resistance of the surrounding potential field. The scoped strategies offer an exclusive view on the working principle of ion movement regardless of the ion species, thus providing a comprehensive guidance for the future exploitation of solid electrolytes.

摘要

固态电解质被认为是液体电解质的理想替代品,可避免基于液体电解质的可充电电池存在的挥发、易燃和爆炸等潜在危害。然而,固态电解质和液体电解质之间仍存在显著的性能差距有待弥合;其中特别重要的一点是离子电导率,它高度依赖于材料类型和结构。在本综述中,通过突出影响离子迁移的两个主要核心因素:离子跳跃路径和骨架相互作用,重新审视了晶体结构中离子跳跃的一般物理图像。然后系统地总结了有效提高无机固态电解质离子电导率的通用策略:为移动离子构建快速扩散路径;以及降低周围势场的阻力。这些有针对性的策略提供了一个关于离子移动工作原理的独特视角,而不考虑离子种类,从而为未来固态电解质的开发提供全面指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验