Krause Daniel T, Förster Beate, Dulle Martin, Krämer Susanna, Böckmann Steffen, Mönich Caroline, Hansen Michael Ryan, Schönhoff Monika, Siozios Vassilios, Grünebaum Mariano, Winter Martin, Förster Stephan, Wiemhöfer Hans-Dieter
Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, Münster, Germany.
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Physics of Nanoscale Systems (ER-C-1), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany.
Small. 2024 Dec;20(49):e2404297. doi: 10.1002/smll.202404297. Epub 2024 Sep 16.
Polymer solid-state electrolytes offer great promise for battery materials with high energy density, mechanical stability, and improved safety. However, their low ion conductivities have so far limited their potential applications. Here, it is shown for poly(ethylene oxide) block copolymers that the super-stoichiometric addition of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as lithium salt leads to the formation of a crystalline PEO block copolymer phase with exceptionally high ion conductivities and low activation energies. The addition of LiTFSI further induces block copolymer phase transitions into bi-continuous Fddd and gyroid network morphologies, providing continuous 3D conduction pathways. Both effects lead to solid-state block copolymer electrolyte membranes with ion conductivities of up to 1·10 S cm at 90 °C, decreasing only moderately to 4·10 S cm at room temperature, and to >1·10 S cm at -20 °C, corresponding to activation energies as low as 0.19 eV. The co-crystallization of PEO and LiTFSI with ether and carbonate solvents is observed to play a key role to realize a super-ionic conduction mechanism. The discovery of PEO super-ionic conductivity at high lithium concentrations opens a new pathway for fabrication of solid polymer electrolyte membranes with sufficiently high ion conductivities over a broad temperature range with widespread applications in electrical devices.
聚合物固态电解质在具有高能量密度、机械稳定性和更高安全性的电池材料方面展现出巨大潜力。然而,它们目前较低的离子电导率限制了其潜在应用。在此,对于聚环氧乙烷嵌段共聚物而言,作为锂盐的双(三氟甲烷磺酰)亚胺锂(LiTFSI)的超化学计量添加导致形成具有异常高离子电导率和低活化能的结晶聚环氧乙烷嵌段共聚物相。LiTFSI的添加进一步诱导嵌段共聚物相转变为双连续Fddd和螺旋状网络形态,提供连续的三维传导路径。这两种效应导致固态嵌段共聚物电解质膜在90°C时离子电导率高达1·10 S cm,在室温下仅适度降低至4·10 S cm,在-20°C时大于1·10 S cm,对应低至0.19 eV的活化能。观察到聚环氧乙烷和LiTFSI与醚和碳酸盐溶剂的共结晶在实现超离子传导机制中起关键作用。在高锂浓度下聚环氧乙烷超离子导电性的发现为制备在宽温度范围内具有足够高离子电导率的固体聚合物电解质膜开辟了一条新途径,这种膜在电气设备中有广泛应用。