Department of Environmental Engineering, Technical University of Denmark, Lyngby 2800, Denmark.
Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Environ Sci Technol. 2022 Apr 19;56(8):5049-5061. doi: 10.1021/acs.est.2c00309. Epub 2022 Apr 4.
The dissolution of sulfide minerals can lead to hazardous arsenic levels in groundwater. This study investigates the oxidative dissolution of natural As-bearing sulfide minerals and the related release of arsenic under flow-through conditions. Column experiments were performed using reactive As-bearing sulfide minerals (arsenopyrite and löllingite) embedded in a sandy matrix and injecting oxic solutions into the initially anoxic porous media to trigger the mineral dissolution. Noninvasive oxygen measurements, analyses of ionic species at the outlet, and scanning electron microscopy allowed tracking the propagation of the oxidative dissolution fronts, the mineral dissolution progress, and the change in mineral surface composition. Process-based reactive transport simulations were performed to quantitatively interpret the geochemical processes. The experimental and modeling outcomes show that pore-water acidity exerts a key control on the dissolution of sulfide minerals and arsenic release since it determines the precipitation of secondary mineral phases causing the sequestration of arsenic and the passivation of the reactive mineral surfaces. The impact of surface passivation strongly depends on the flow velocity and on the spatial distribution of the reactive minerals. These results highlight the fundamental interplay of reactive mineral distribution and hydrochemical and hydrodynamic conditions on the mobilization of arsenic from sulfide minerals in flow-through systems.
硫化物矿物的溶解会导致地下水中砷含量达到危险水平。本研究调查了在流动条件下天然含砷硫化物矿物的氧化溶解以及相关的砷释放情况。使用嵌入在沙质基质中的反应性含砷硫化物矿物(毒砂和硫砷铜矿)进行了柱实验,将含氧溶液注入最初缺氧的多孔介质中以触发矿物溶解。非侵入式氧测量、出口处离子种类分析和扫描电子显微镜允许跟踪氧化溶解前缘的传播、矿物溶解进度以及矿物表面成分的变化。进行基于过程的反应传输模拟以定量解释地球化学过程。实验和模拟结果表明,孔隙水酸度对硫化物矿物的溶解和砷释放具有关键控制作用,因为它决定了次生矿物相的沉淀,导致砷的固定和反应性矿物表面的钝化。表面钝化的影响强烈取决于流速和反应性矿物的空间分布。这些结果突出了反应性矿物分布与水化学和水动力条件在流动系统中从硫化物矿物中迁移砷的基本相互作用。