Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125.
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2119523119. doi: 10.1073/pnas.2119523119. Epub 2022 Apr 4.
We present an approach to fabricate biological matrix composites made entirely from cultured plant cells. We utilize the cell’s innate ability to synthesize nanofibrillar cell walls, which serve as the composite’s fundamental building blocks. Following a controlled compression/dehydration process, the cells arrange into lamellar structures with hierarchical features. We demonstrate that the native cell wall nanofibrils tether adjacent cells together through fibrillar interlocking and intermolecular hydrogen bonding. These interactions facilitate intercellular adhesion and eliminate the need for other binders. Our fabrication process utilizes the entire plant cell, grown in an in vitro culture; requires no harsh chemical treatments or waste-generating extraction or selection processes; and leads to bulk biocomposites that can be produced in situ and biodegrade in soil. The final mechanical properties are comparable to commodity plastics and can be further modulated by introducing filler particles.
我们提出了一种制造完全由培养植物细胞组成的生物基质复合材料的方法。我们利用细胞合成纳米纤维细胞壁的固有能力,将其作为复合材料的基本构建块。在受控的压缩/脱水过程之后,细胞排列成具有层次特征的层状结构。我们证明,天然细胞壁纳米纤维通过纤维状互锁和分子间氢键将相邻的细胞连接在一起。这些相互作用促进了细胞间的黏附,并消除了对其他粘合剂的需求。我们的制造工艺利用了在体外培养中生长的整个植物细胞;不需要苛刻的化学处理,也不需要产生废物的提取或选择过程;并且可以原位生产并在土壤中生物降解的大块生物复合材料。最终的机械性能可与商品塑料媲美,并可通过引入填充颗粒进一步调节。