Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
Department of Bioengineering, Imperial College London, London, UK.
Nat Mater. 2021 May;20(5):691-700. doi: 10.1038/s41563-020-00857-5. Epub 2021 Jan 11.
Biological systems assemble living materials that are autonomously patterned, can self-repair and can sense and respond to their environment. The field of engineered living materials aims to create novel materials with properties similar to those of natural biomaterials using genetically engineered organisms. Here, we describe an approach to fabricating functional bacterial cellulose-based living materials using a stable co-culture of Saccharomyces cerevisiae yeast and bacterial cellulose-producing Komagataeibacter rhaeticus bacteria. Yeast strains can be engineered to secrete enzymes into bacterial cellulose, generating autonomously grown catalytic materials and enabling DNA-encoded modification of bacterial cellulose bulk properties. Alternatively, engineered yeast can be incorporated within the growing cellulose matrix, creating living materials that can sense and respond to chemical and optical stimuli. This symbiotic culture of bacteria and yeast is a flexible platform for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.
生物系统组装具有自主模式化、自我修复能力,并能感知和响应其环境的活体材料。工程化活体材料领域旨在使用基因工程生物体来创造具有类似于天然生物材料特性的新型材料。在这里,我们描述了一种使用稳定的酿酒酵母和产细菌纤维素的Komagataeibacter rhaeticus 细菌共培养物来制造功能性细菌纤维素基活体材料的方法。酵母菌株可以被工程化以将酶分泌到细菌纤维素中,从而产生自主生长的催化材料,并能够对细菌纤维素的整体性质进行 DNA 编码修饰。或者,工程化的酵母可以被纳入正在生长的纤维素基质中,从而创造出能够感知和响应化学和光学刺激的活体材料。这种细菌和酵母的共生培养物是一种灵活的平台,可用于生产具有在生物传感和生物催化方面潜在应用的细菌纤维素基工程化活体材料。